IOS Essentials

Essential Features every ISP should Consider

Version 3.0alpha
Background

- Presentation based on content from the Cisco ISP Essentials book

 www.ciscopress.com to buy it 😊

 www.ispbook.com for updates
Overview

- IOS Software and Router Management
- General Features
- Routing Configuration Guidelines
- Securing the Router
- Securing the Network
Which IOS version?

- Platforms
 GSR, 10000 series, 7500 series, 7200 series
- Recommended release is 12.0S train
 Current version is 12.0(26)S1
 Available on CCO
- Has all of latest ISP supported features
Which IOS version?

- Platforms
 5x00, 4500, 3600, 2600 and 2500 series
- Recommended release is the 12.2 mainline train
 Current version is 12.2(21)
 Has many of the features from 12.0S
 Available on CCO
Cisco IOS Roadmap

Cisco IOS Roadmap

• Good practice is to have at least two distinct flash memory volumes
 allows backup image(s)
 back out path in case of upgrade problems

• Partition the built-in flash
 partition flash 2 16 16

• Install a PCMCIA flash card in external slot(s)
• Ensure there is a configured back for the selected IOS image

Backup image is previous good image

```plaintext
boot system flash slot0:rsp-k4pv-mz.120-23.S1
boot system flash slot1:rsp-k4pv-mz.120-21.S5
boot system flash
```

Which means:

Boot quoted image from slot0:. If it isn’t there, boot the quoted image in slot1:. If that isn’t there, try the first image available in flash
IOS Software Management
System Memory

• Good practice is to maximise router memory
 allows for the rapidly growing Internet
• At least 128Mbytes RAM needed for full Internet routing table
• Recognised that equipment works best when “left alone”
IOS Software Management
When to Upgrade

• Upgrades needed when:
 bug fixes released
 new hardware support
 new software features required

• Otherwise:

If it isn’t broken, don’t fix it!
Configuration Management

- Backup NVRAM configuration off the router:
 - write configuration to TFTP server
 - TFTP server files kept under revision control
 - router configuration built from master database
- Allows rapid recovery in case of emergency
Larger Configurations

• Compress Configuration

 Used when configuration required is larger than configuration memory (NVRAM) available.

 service compress-config

• FLASH or remote server

 Used when NVRAM compression is not enough
Command Line Interface Features

- Some Convenient Editing Keys

 TAB command completion
 arrow keys scroll history buffer
 ctrl A beginning of line
 ctrl E end of line
 ctrl K delete all chars to end of line
 ctrl X delete all chars to beginning of line
 ctrl W delete word to left of cursor
 esc B back one word
 esc F forward one word
Command Line Interface Features

• CLI now has string searches

 `show configuration | [begin|include|exclude] <regexp>`

• Pager “--more--” now has string searches

 `/<regexp>, -<regexp>, +<regexp>`

• “More” command has string searches

 `more <filename> | [begin|include|exclude] <regexp>`
Use detailed logging

- Off load logging information to a logging server.
- Use the full detailed logging features to keep exact details of the activities.

```plaintext
service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
no logging console
logging buffered 16384
logging trap debugging
logging facility local7
logging 169.223.32.1
logging 169.223.35.8
logging source-interface loopback0
```
Network Time Protocol

- If you want to cross compare logs, you need to synchronize the time on all the devices.

- Use NTP
 - from external time source
 - Upstream ISP, Internet, GPS, atomic clock
 - from internal time source
 - router can act as stratum 1 time source
Network Time Protocol

- Set timezone
 `clock timezone <name> [+-hours [mins]]`

- Router as source
 `ntp master 1`

- External time source (master)
 `ntp server a.b.c.d`

- External time source (equivalent)
 `ntp peer e.f.g.h`
Network Time Protocol

• Example Configuration:

 clock timezone SST 8
 ntp update-calendar
 ntp source loopback0
 ntp server <other time source>
 ntp peer <other time source>
 ntp peer <other time source>
SNMP

• Remove any SNMP commands if SNMP is not going to be used.

• If SNMP is going to be used:

 access-list 98 permit 169.223.1.1
 access-list 98 deny any
 snmp-server community 5nc02m RO 98
 snmp-server trap-source Loopback0
 snmp-server trap-authentication
 snmp-server host 169.223.1.1 5nc02m
HTTP Server

• HTTP Server in IOS from 11.1CC and 12.0S
 router configuration via web interface

• Disable if not going to be used:
 no ip http server

• Configure securely if going to be used:
 ip http server
 ip http port 8765
 ip http authentication aaa
 ip http access-class <1–99>
Core Dumps

• Cisco routers have a core dump feature that will allow ISPs to transfer a copy of the core dump to a specific FTP server.

• Set up a FTP account on the server the router will send the core dump to.

• The server should NOT be a public server
 use filters and secure accounts
 locate in NOC with network operations staff access only
Core Dumps

Example configuration:

```
ip ftp username cisco
ip ftp password 7 045802150C2E
ip ftp source-interface loopback 0
exception protocol ftp
exception dump 169.223.32.1
```
General Features
Interface Configuration

• “ip unnumbered”
 no need for an IP address on point-to-point links
 keeps IGP small

• “description”
 customer name, circuit id, cable number, etc
 on-line documentation!

• “bandwidth”
 used by IGP
documentation!
Interface Configuration – Example

- **ISP router**

```plaintext
! interface loopback 0
description Loopback interface on GW2 Router
ip address 215.17.3.1 255.255.255.255
!
interface Serial 5/0
description 128K HDLC link to Galaxy Publications Ltd [galpub1] WT50314E R5-0
bandwidth 128
ip unnumbered loopback 0
!
ip route 215.34.10.0 255.255.252.0 Serial 5/0
```

- **Customer router**

```plaintext
! interface Ethernet 0
description Galaxy Publications LAN
ip address 215.34.10.1 255.255.252.0
!
interface Serial 0
description 128K HDLC link to Galaxy Internet Inc WT50314E C0
bandwidth 128
ip unnumbered ethernet 0
!
ip route 0.0.0.0 0.0.0.0 Serial 0
```
Interface Status Checking

- `show interface switching`
 Hidden command which provides information about the switching status of the router interfaces

- `show interface stats`
 Hidden command which provides inbound and outbound packet information on the router interfaces

- `show idb (interface descriptor blocks)`
 Shows how many IDBs are configured on the router
 Early routers (such as AGS+) could only support 300 IDBs
NetFlow

• Provides network administrators with “packet flow” information

• Allows:
 - security monitoring
 - network management and planning
 - customer billing
 - traffic flow analysis

• Available from 11.1CC for 7x00 and 12.0 for remaining router platforms
NetFlow – Capacity Planning

Public Routers 1, 2, 3 Month of September Outbound Traffic

<table>
<thead>
<tr>
<th>Service</th>
<th>Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEC</td>
<td>32%</td>
</tr>
<tr>
<td>SURAnet</td>
<td>20%</td>
</tr>
<tr>
<td>JHU</td>
<td>10%</td>
</tr>
<tr>
<td>Erols</td>
<td>8%</td>
</tr>
<tr>
<td>WebTV</td>
<td>8%</td>
</tr>
<tr>
<td>ABSNET</td>
<td>6%</td>
</tr>
<tr>
<td>OARNet</td>
<td>4%</td>
</tr>
<tr>
<td>IBM</td>
<td>2%</td>
</tr>
<tr>
<td>AOL</td>
<td>1%</td>
</tr>
<tr>
<td>Compuserve</td>
<td>1%</td>
</tr>
<tr>
<td>WebTV</td>
<td>1%</td>
</tr>
<tr>
<td>SURAnet</td>
<td>1%</td>
</tr>
<tr>
<td>JHU</td>
<td>1%</td>
</tr>
<tr>
<td>Erols</td>
<td>1%</td>
</tr>
<tr>
<td>Digex</td>
<td>1%</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
</tr>
<tr>
<td>AT&T</td>
<td>1%</td>
</tr>
<tr>
<td>IBM</td>
<td>1%</td>
</tr>
<tr>
<td>NIH</td>
<td>1%</td>
</tr>
<tr>
<td>OARNet</td>
<td>1%</td>
</tr>
<tr>
<td>NIH</td>
<td>1%</td>
</tr>
<tr>
<td>PacBell Internet Service</td>
<td>1%</td>
</tr>
<tr>
<td>BBN</td>
<td>1%</td>
</tr>
</tbody>
</table>
NetFlow

• Configuration example:
 interface serial 5/0
 ip route-cache flow

• If CEF not configured, NetFlow enhances existing switching path

• If CEF configured, NetFlow becomes a flow information gatherer
NetFlow

• Information export:
 router to collector system
 ip flow-export version 5 [origin-as|peer-as]
 ip flow-export destination x.x.x.x <udp-port>

• Flow aggregation (new in 12.0S):
 router sends aggregate records to collector system
 ip flow-aggregation cache as|prefix|dest|source|proto enabled
 export destination x.x.x.x <udp-port>
NetFlow

• Sample Output on router:

Beta-7200-2>sh ip cache flow
IP packet size distribution (17093 total packets):
1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
.000 .735 .088 .054 .000 .008 .046 .054 .000 .009 .000 .000 .000 .000
512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

IP Flow Switching Cache, 1257536 bytes
3 active, 15549 inactive, 12992 added
210043 aged polls, 0 flow alloc failures
last clearing of statistics never

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Total Flows</th>
<th>Flows /Sec</th>
<th>Packets /Flow</th>
<th>Bytes /Pkt</th>
<th>Packets /Sec</th>
<th>Active (Sec)</th>
<th>Idle (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP-Telnet</td>
<td>35</td>
<td>0.0</td>
<td>80</td>
<td>41</td>
<td>0.0</td>
<td>14.5</td>
<td>12.7</td>
</tr>
<tr>
<td>UDP-DNS</td>
<td>20</td>
<td>0.0</td>
<td>1</td>
<td>67</td>
<td>0.0</td>
<td>0.0</td>
<td>15.3</td>
</tr>
<tr>
<td>UDP-NTP</td>
<td>1223</td>
<td>0.0</td>
<td>1</td>
<td>76</td>
<td>0.0</td>
<td>0.0</td>
<td>15.5</td>
</tr>
<tr>
<td>UDP-other</td>
<td>11709</td>
<td>0.0</td>
<td>1</td>
<td>87</td>
<td>0.0</td>
<td>0.1</td>
<td>15.5</td>
</tr>
<tr>
<td>ICMP</td>
<td>2</td>
<td>0.0</td>
<td>1</td>
<td>56</td>
<td>0.0</td>
<td>0.0</td>
<td>15.2</td>
</tr>
<tr>
<td>Total:</td>
<td>12989</td>
<td>0.0</td>
<td>1</td>
<td>78</td>
<td>0.0</td>
<td>0.1</td>
<td>15.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SrcIf</th>
<th>SrcIPaddress</th>
<th>DstIf</th>
<th>DstIPaddress</th>
<th>Pr</th>
<th>SrcP</th>
<th>DstP</th>
<th>Pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et1/1</td>
<td>144.254.153.10</td>
<td>Null</td>
<td>144.254.153.127</td>
<td>11</td>
<td>008A</td>
<td>008A</td>
<td>1</td>
</tr>
<tr>
<td>Et1/1</td>
<td>144.254.153.112</td>
<td>NULL</td>
<td>255.255.255.255</td>
<td>11</td>
<td>0208</td>
<td>0208</td>
<td>1</td>
</tr>
<tr>
<td>Et1/1</td>
<td>144.254.153.50</td>
<td>Local</td>
<td>144.254.153.51</td>
<td>06</td>
<td>701D</td>
<td>0017</td>
<td>63</td>
</tr>
</tbody>
</table>
Using DNS

- Map names to addresses
- Descriptive names

ip domain-name

ip name-server
- Sample trace through network:

 4:Received echo from sj-wall-2.cisco.com [198.92.1.138] in 440 msec
 5:Received echo from barrnet-gw.cisco.com [192.31.7.37] in 335 msec
 6:Received echo from paloalto-crl.bbnplanet.net [131.119.26.9] in 335 msec
 7:Received echo from paloalto-br2.bbnplanet.net [131.119.0.194] in 327 msec
 8:Received echo from core6-hssi6-0.SanFrancisco.mci.net [206.157.77.21] in 468 msec
 9:Received echo from bordercore1-loopback.Washington.mci.net[166.48.36.1] in 454 msec
 10:Received 48 bytes from www.getit.org [199.233.200.55] in 466 msec
Routing
Routing Tables Feed the Forwarding Table

- BGP 4 Routing Table
- OSPF – Link State Database
- Static Routes
- Forward Table
HSRP

- Hot Standby Routing Protocol

 virtual default gateway for dumb system LAN
 transparent cut-over in case of failure

Router1:

 interface ethernet 0/0
 description Service LAN
 ip address 169.223.10.1 255.255.255.0
 standby 10 ip 169.223.10.254

Router2:

 interface ethernet 0/0
 description Service LAN
 ip address 169.223.10.2 255.255.255.0
 standby 10 priority 150
 standby 10 preempt
 standby 10 ip 169.223.10.254
CIDR Features

- The Internet is a classless world. All routers connect to the Internet must be CIDR compliant, else there will be problems with the network connection to the Internet.

- All Cisco routers should have the following commands configured for CIDR:

 `ip subnet-zero`

 `ip classless`

- These are default from IOS 12.0 onwards
Selective Packet Discard

• When a link goes to a saturated state, you will drop packets. The problem is that you will drop any type of packets – Including your routing protocols.

• Selective Packet Discard (SPD) will attempt to drop non-routing packets instead of routing packets when the link is overloaded.

 `ip spd enable`

• Enabled by default from 11.2(5)P and later releases, available option in 11.1CA/CC.
Source Routing

- IP has provision to allow source IP host to specify route through Internet
- ISPs should turn this off, unless it is specifically required:

  ```
  no ip source-route
  ```
BGP

• There are key BGP features that should be configured by ISPs:

 update-source loopback 0 (for iBGP)

 no synchronization

 no auto-summary

 ip bgp-community new-format

 bgp neighbor shutdown

 BGP Route Refresh Capability

 bgp dampening
BGP

• More helpful features:
 - bgp deterministic-med
 - bgp neighbor remove-private-AS
 - bgp neighbor authentication
 - bgp neighbor maximum-prefix
 - bgp neighbor maxas-limit
 - bgp log-neighbor-changes
 - no bgp fast-external-fallover
 - bgp peer-groups
 - ip prefix-lists
iBGP configuration

• Use loopback interface
 it never goes away
 routers have multiple external paths
 has multiple uses

 interface loopback 0
 ip address 215.17.1.34 255.255.255.255
 router bgp 200
 neighbor 215.17.1.35 remote-as 200
 neighbor update-source loopback 0
 neighbor 215.17.1.36 remote-as 200
 neighbor update-source loopback 0
BGP Synchronization

- By default BGP does not advertise a route before all routers in the AS have learned it via an IGP
 i.e., if the prefix isn’t in the IGP, BGP won’t announce it
- Synchronization should be disabled in every ISP network
 ISPs use iBGP across backbone, IGP simply provides internal reachability

no synchronization
BGP Auto Summarisation

- Automatically summarises subprefixes to the classful network when redistributed to BGP from another routing protocol
- Must be turned off for any Internet connected site using BGP.
- Internet is classless – class A, class B and class C are no more.

```
no auto-summary
```
BGP Community Format

- Communities are used extensively
- Cisco IOS supports two formats
 - One 32 bit integer e.g. 13107210
 - Two 16 bit integers e.g. 200:10
- RFC1998 recommends 16:16 format
 - Format AS:xxxx

 `ip bgp-community new-format`
Route Refresh Capability

- Facilitates non-disruptive policy changes
- No configuration is needed
- No additional memory is used
- Requires peering routers to support “route refresh capability” – RFC2918
 - `clear ip bgp x.x.x.x in` tells peer to resend full BGP announcement
 - `clear ip bgp x.x.x.x out` resends full BGP announcement to peer
Route Refresh Capability

• Use Route Refresh capability if supported
 find out from “show ip bgp neighbor”
 Non-disruptive, “Good For the Internet”

• Otherwise use Soft Reconfiguration IOS feature
 neighbor x.x.x.x soft-reconfiguration in

• Only hard-reset a BGP peering as a last resort
 Consider the impact to be equivalent to a router reboot
Managing Policy Changes

- Ability to clear the BGP sessions of groups of neighbours configured according to several criteria

 - `clear ip bgp <addr> [soft] [in|out]

 <addr> may be any of the following

 - `x.x.x.x`
 IP address of a peer
 - `*`
 all peers
 - `ASN`
 all peers in an AS
 - `external`
 all external peers
 - `peer-group <name>`
 all peers in a peer-group
Clear BGP Sessions per AS

• Ability to clear the BGP sessions of all the neighbors configured with a specific AS number

• Syntax:

 clear ip bgp <as number>

• Availability since 11.1(14)CA, 11.1CC, 11.2(9), 11.3(2)
BGP Neighbour Shutdown

• Shutdown BGP peering
 previously required operator to delete configuration
 now can simply “shutdown” the peering

• Configuration example:
 router bgp 200
 neighbor 215.7.1.1 remote-as 210
 neighbor 215.7.1.1 shutdown

• Can be reactivated with
 no neighbor 215.7.1.1 shutdown
BGP Damping

- Route flap damping to minimise instability in local network and Internet
BGP Damping

- Recommended values and sample configurations for ISPs at:

 http://www.ripe.net/docs/ripe-229.html

- Example techniques:

 Internet Routing Architectures 2nd Edition – Sam Halabi & Danny McPherson

 bgp dampening
Deterministic MED

- RFC1771 says that MED is not always compared
- As a result, the ordering of the paths can effect the decision process
- By default in Cisco IOS, the prefixes are compared in order of arrival (most recent to oldest)

Use `bgp deterministic-med` to order paths consistently

The bestpath is recalculated as soon as the command is entered

Enable in all the routers in the AS
Deterministic MED—Operation

- The paths are ordered by Neighbour AS
- The bestpath for each Neighbour AS group is selected
- The overall bestpath results from comparing the winners from each group
- The bestpath will be consistent because paths will be placed in a deterministic order
Private-AS Removal

- Private ASes range from 64512 to 65534
 Used for internal policy – must not appear on Internet
- `neighbor x.x.x.x remove-private-AS`
- Rules:
 available for eBGP neighbors only
 if the update has AS_PATH made up of private-AS numbers, the private-AS will be dropped
 if the AS_PATH includes private and public AS numbers, private AS number will not be removed…it is a configuration error!
 if AS_PATH contains the AS number of the eBGP neighbor, the private-AS numbers will not be removed
 if used with confederations, it will work as long as the private AS numbers are after the confederation portion of the AS_PATH
BGP Neighbour Authentication

• MD5 authentication between two peers
 password must be known to both peers

• peer-group can be used to apply to multiple peerings

 neighbor 169.222.10.1 password v61ne0qkel133&
BGP Maximum Prefix Tracking

• Allow configuration of the maximum number of prefixes a BGP router will receive from a peer

• Two level control
 Warning threshold: log warning message
 Maximum: tear down the BGP peering, manual intervention required to restart
neighbor <x.x.x.x> maximum-prefix <max>
 [<threshold>] [warning-only]

• Threshold is an optional parameter between 1 to 100 percent
 Specify the percentage of <max> that a warning message will be generated. Default is 75%.

• Warning-only is an optional keyword which allows log messages to be generated but peering session will not be torn down
BGP Maximum AS Path Length

- IOS can limit the maximum AS Path length acceptable by the router’s BGP process

 `neighbor x.x.x.x maxas-limit 15`

 Discards all prefixes with AS-PATH length greater than 15 prefixes

 Easier and less prone to error than using a filter-list
BGP log-neighbor-changes

- Log neighbour up/down events, and the reason for the last neighbour peering reset
- Available from 11.1 CC and 12.0 releases
- Syntax (router subcommand):
  ```
  [no] log-neighbor-changes
  ```
- Typical log messages:
  ```
  %BGP-6-ADJCHANGE: neighbor x.x.x.x Up
  %BGP-6-RESET: neighbor x.x.x.x reset
  (User reset request)
  ```
Reason for Last Peer Reset

- Router keeps reason for the last BGP peer reset for each of its peers. Useful for analysing BGP session resets
- Available as part of the `show ip bgp neighbor` command output
- Accessible through SNMP
- Has been available since 11.1CC, 11.2(12) and 11.3(2)
BGP Peering

• By default, peerings are reset immediately the line protocol to an external neighbour goes down bad for high latency, unreliable, long distance, or congested links

• IOS option to disable this recommended in RIPE-229 uses standard keepalive/hold timers (60s/180s)

 no bgp fast-external-fallover
BGP peer groups

- Reduces CPU load and memory update generation processed once

BGP configuration simplified

```plaintext
router bgp 109
neighbor internal peer-group
neighbor internal remote-as 109
neighbor internal update-source loopback 0
neighbor 131.108.10.1 peer-group internal
neighbor 131.108.20.1 peer-group internal
```
Prefix Lists

- High performing access-list
- Faster loading of large lists
- Incremental configuration
 sequence numbers optional
 no ip prefix-list sequence-number
- Available from 11.1(17)CC and 12.0
- Configured by:
 ip prefix-list <list-name>
Prefix-list Command

[ip prefix-list \(<list-name>\) [seq \(<seq-value>\)] deny | permit \(<network>\)/\(<len>\) [ge \(<ge-value>\)] [le \(<le-value>\)]

\(<network>\)/\(<len>\): The prefix and its length

ge \(<ge-value>\): "greater than or equal to"

le \(<le-value>\): "less than or equal to"

Both "ge" and "le" are optional. Used to specify the range of the prefix length to be matched for prefixes that are more specific than \(<network>\)/\(<len>\)
Prefix Lists – Examples

- Deny default route

 `ip prefix-list EG deny 0.0.0.0/0`

- Permit the prefix 35.0.0.0/8

 `ip prefix-list EG permit 35.0.0.0/8`

- In 192/8 allow up to /24

 `ip prefix-list EG permit 192.0.0.0/8 le 24`

- In 192/8 deny /25 and above

 `ip prefix-list EG deny 192.0.0.0/8 ge 25`

- Permit all

 `ip prefix-list EG permit 0.0.0.0/0 le 32`
Prefix Lists in BGP

• Prefix-list should be used as an alternative to distribute-list

```conf
router bgp 200
neighbor 169.222.1.1 remote-as 200
neighbor 169.222.1.1 prefix-list FILTER-IN in
neighbor 169.222.1.1 prefix-list FILTER-OUT out
```

• Prefix-lists and access-lists are mutually exclusive
Prefix-list route-map command

route-map <name> permit|deny <seq-num>
match ip address prefix-list <name> [<name> ...]

• Used for route filtering, originating default, and redistribution in other routing protocols as well

• Not for packet filtering
Prefix-List ORF

- Outbound Route Filter Capability when using prefix-lists
 new from 12.0(5)S release
- If remote BGP peer supports ORF capability, local BGP router can send inbound prefix-list to remote router
- Remote router installs received prefix-list in addition to its own outbound filters
- Reduces unwanted routing updates from peers
Securing the Router
ISP Security

• ISPs need to:
 - Protect themselves
 - Help protect their customers from the Internet
 - Protect the Internet from their customers
ISP Security

• Where to start

Cisco Internet Security Advisories

Cisco IOS documentation
www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/

RFC2196 (Site Security Handbook)

Networker’s Security Sessions
Global Services You Turn OFF

- Some services turned on by default, should be turned off to save memory and prevent security breaches/attacks

 no service finger (before 12.0)
 no ip finger (from 12.0)
 no service pad
 no service udp-small-servers
 no service tcp-small-servers
 no ip bootp server
Interface Services You Turn OFF

• Some IP features are great for Campus LANs, but do not make sense on a ISP backbone.

• All interfaces on an ISP’s backbone router should have the follow as a default:

 no ip redirects
 no ip directed-broadcast (default from 12.0)
 no ip proxy-arp
Cisco Discovery Protocol

• Lets network administrators discover neighbouring Cisco equipment, model numbers and software versions

• Should not be needed on ISP network

 no cdp run

• Should not be activated on any public facing interface: IXP, customer, upstream ISP

• Disable per interface

 no cdp enable
Login Banner

• Use a good login banner, or nothing at all:

 banner login ^

 Authorised access only
 This system is the property of Galactic Internet
 Disconnect IMMEDIATELY if you are not an authorised user!
 Contact noc@net.galaxy +99 876 543210 for help.

 ^
Exec Banner

- Useful to remind logged in users of local conditions:

  ```
  banner exec ^
  PLEASE NOTE – THIS ROUTER SHOULD NOT HAVE A DEFAULT ROUTE!
  It is used to connect paying peers. These ‘customers’ should not be able to default to us. The config for this router is NON-STANDARD.
  Contact Network Engineering +99 876 543234 for more info.
  ^
  ```
Use Enable Secret

- Encryption '7' on a Cisco is reversible.
- The “enable secret” password encrypted via a one-way algorithm.

```plaintext
enable secret <removed>
no enable password
service password-encryption
```
Turn on Nagle

- Telnet was designed to do one character, one packet dialog.
- John Nagle's algorithm (RFC 896) helps alleviate the small-packet problem in TCP.

```
service nagle
```
ident Feature

- Identification (ident) support allows you to query a Transmission Control Protocol (TCP) port for identification.
- This feature enables an insecure protocol, described in RFC 1413, to report the identity of a client initiating a TCP connection and a host responding to the connection. No attempt is made to protect against unauthorized queries.

```plaintext
ip ident
```
VTY and Console port timeouts

• Default idle timeout on async ports is 10 minutes 0 seconds

  ```
  exec-timeout 10 0
  ```

• Timeout of 0 means permanent connection

• TCP keepalives on incoming network connections

  ```
  service tcp-keepalives-in
  ```
VTY security

Access to VTYs should be controlled, not left open. Consoles should be used for last resort admin only:

```
access-list 3 permit 215.17.1.0 0.0.0.255
access-list 3 deny any
line vty 0 4
  access-class 3 in
  exec-timeout 5 0
  transport input telnet
  transport output none
  transport preferred none
  password 7 045802150C2E
```
VTY Access and SSH

- Secure Shell Supported as from IOS 12.0S
- Obtain, load and run appropriate crypto images on router
- Set up SSH on router

 Beta7200(config)#crypto key generate rsa
- Add it as input transport

 line vty 0 4
 transport input telnet ssh
User Authentication – take 1

- Account per user, with passwords

```text
aaa new-model
aaa authentication login neteng local
username joe password 7 1104181051B1
username jim password 7 0317B21895FE
line vty 0 4
  login neteng
  access-class 3 in
```
More recent versions of IOS add MD5 encryption for user passwords

```
aaa new-model
aaa authentication login neteng local
username joe secret 5 $1$j6Ac$3KarJszBV3VMaL/2Nio3E.
username jim secret 5 $1$LPV2$Q04NwAudy0/4AHHHQHvWj0
line vty 0 4
  login neteng
  access-class 3 in
```
User Authentication

• Use centralised authentication system
 RADIUS (not recommended for system security)
 TACACS+

 aaa new-model
 aaa authentication login default tacacs+ enable
 aaa authentication enable default tacacs+ enable
 aaa accounting exec start-stop tacacs+
 ip tacacs source-interface Loopback0
 tacacs-server host 215.17.1.1
 tacacs-server host 215.17.5.35
 tacacs-server key CKr3t#
 line vty 0 4
 access-class 3 in
User Authentication

TACACS+ Provides a detailed audit trail of what is happening on the network devices.

<table>
<thead>
<tr>
<th>User-Name</th>
<th>Group-Name</th>
<th>cmd</th>
<th>priv-lvl</th>
<th>service</th>
<th>NAS-Portname</th>
<th>task_id</th>
<th>NAS-IP-Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>enable <cr></td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>exit <cr></td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>no aaa accounting exec Workshop</td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>exit <cr></td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>pfs</td>
<td>NOC</td>
<td>enable <cr></td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>pfs</td>
<td>NOC</td>
<td>exit <cr></td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>enable <cr></td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>show accounting <cr></td>
<td>15</td>
<td>shell</td>
<td>tty0</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>write terminal <cr></td>
<td>15</td>
<td>shell</td>
<td>tty0</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>configure <cr></td>
<td>15</td>
<td>shell</td>
<td>tty0</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>exit <cr></td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>write terminal <cr></td>
<td>15</td>
<td>shell</td>
<td>tty0</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>configure <cr></td>
<td>15</td>
<td>shell</td>
<td>tty0</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>aaa new-model <cr></td>
<td>15</td>
<td>shell</td>
<td>tty0</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>aaa authorization commands 0 de</td>
<td>15</td>
<td>shell</td>
<td>tty0</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>exit <cr></td>
<td>0</td>
<td>shell</td>
<td>tty0</td>
<td>0</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>ping <cr></td>
<td>15</td>
<td>shell</td>
<td>tty0</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>show running-config <cr></td>
<td>15</td>
<td>shell</td>
<td>tty66</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>router ospf 210 <cr></td>
<td>15</td>
<td>shell</td>
<td>tty66</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
<tr>
<td>bgreene</td>
<td>NOC</td>
<td>debug ip ospf events <cr></td>
<td>15</td>
<td>shell</td>
<td>tty66</td>
<td>15</td>
<td>210.210.51.224</td>
</tr>
</tbody>
</table>
Securing the Network
Ingress and Egress Route Filtering

• There are routes that should NOT be routed on the Internet
 RFC 1918 and “Martian” Networks
 127.0.0.0/8 and Multicast blocks
 See RFC3330 for background information

• Check Rob Thomas’ list of “bogons”
 [link](http://www.cymru.org/Documents/bogon-list.html)

• BGP should have filters applied so that these routes are not advertised to or propagated through the Internet
Ingress and Egress Route Filtering

BGP Configuration

```
router bgp 200
no synchronization
bgp dampening
  neighbor 220.220.4.1 remote-as 210
neighbor 220.220.4.1 version 4
neighbor 220.220.4.1 prefix-list rfc1918-sua in
neighbor 220.220.4.1 prefix-list rfc1918-sua out
neighbor 222.222.8.1 remote-as 220
neighbor 222.222.8.1 version 4
neighbor 222.222.8.1 prefix-list rfc1918-sua in
neighbor 222.222.8.1 prefix-list rfc1918-sua out
no auto-summary
!```
### Prefix List

```plaintext
<table>
<thead>
<tr>
<th>Command</th>
<th>Prefix</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip prefix-list rfc1918-sua deny</code></td>
<td>0.0.0.0/8</td>
<td>le 32</td>
</tr>
<tr>
<td><code>ip prefix-list rfc1918-sua deny</code></td>
<td>10.0.0.0/8</td>
<td>le 32</td>
</tr>
<tr>
<td><code>ip prefix-list rfc1918-sua deny</code></td>
<td>127.0.0.0/8</td>
<td>le 32</td>
</tr>
<tr>
<td><code>ip prefix-list rfc1918-sua deny</code></td>
<td>169.254.0.0/16</td>
<td>le 32</td>
</tr>
<tr>
<td><code>ip prefix-list rfc1918-sua deny</code></td>
<td>172.16.0.0/12</td>
<td>le 32</td>
</tr>
<tr>
<td><code>ip prefix-list rfc1918-sua deny</code></td>
<td>192.0.2.0/24</td>
<td>le 32</td>
</tr>
<tr>
<td><code>ip prefix-list rfc1918-sua deny</code></td>
<td>192.168.0.0/16</td>
<td>le 32</td>
</tr>
<tr>
<td><code>ip prefix-list rfc1918-sua deny</code></td>
<td>224.0.0.0/3</td>
<td>le 32</td>
</tr>
<tr>
<td><code>ip prefix-list rfc1918-sua permit</code></td>
<td>0.0.0.0/0</td>
<td>le 32</td>
</tr>
</tbody>
</table>
```
Ingress & Egress Route Filtering

Your customers should not be sending *any* IP packets out to the Internet with a source address other than the address you have allocated to them!
Ingress & Egress Packet Filtering

• BCP 38/ RFC 2827

• Title: Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing

• Author(s): P. Ferguson, D. Senie
Packet Filtering

- Static Access List on the edge of the Network.
- Dynamic Access List with AAA Profiles
- Unicast RPF
Outbound Packet Filtering

Allow source address 165.21.0.0/16

Block source address from all other networks

Ex. IP addresses with a source of 10.1.1.1 would be blocked
Inbound Packet Filtering

Deny source address 165.21.0.0/16

Block source address from all other networks

Ex. IP addresses with a source of 10.1.1.1 would be blocked
Dynamic ACLs with AAA Virtual Profiles

- Logical extension of Dialer Profile functionality
- ACLs stored in the Central AAA Server
- Supports both Radius and Tacacs+

Diagram:
- User X (Remote LAN Bridge/Router)
- User Y (ISDN Single User Client with ISDN Card)
- User Z (Single User Client with ISDN BRI T/A or Modem)
- AAA Server
- Physical Interface
- Virtual Access Interface
- Virtual Template Interface
- Network Access Server

Steps:
1. Check Authentication
2. OK
3. Get User Config
4. OK
5. User config Info Delivered
6. Create Virtual Access Interface
7. Virtual Access Interface Cloned from Virtual Template Interface
Reverse Path Forwarding

• Supported from 11.1(17)CC images
• CEF switching must be enabled
• Source IP packets are checked to ensure that the route back to the source uses the same interface
• Thought/planning required in multihoming situations
Reverse Path Forwarding

• **IOS Command**

  ```
 interface serial 1/0
 ip verify unicast reverse-path <acl>
  ```

• **Access-list has two uses**

  To allow prefixes which have failed the uRPF test
  (access-list permit statement)

  To log uRPF failures (access-list deny log statement)
### CEF Unicast RPF

#### Routing Table:
- 210.210.0.0 via 172.19.66.7
- 172.19.0.0 is directly connected, Fddi 2/0/0

#### CEF Table:
- 210.210.0.0 172.19.66.7 Fddi 2/0/0
- 172.19.0.0 attached Fddi 2/0/0

#### Adjacency Table:
- Fddi 2/0/0 172.19.66.7 50000603E...AAAA03000800

**RPF Checks**
- Checks to see if the source address’s reverse path matches the input port.

**If OK, RPF passed the packet to be forwarded by CEF.**
CEF Unicast RPF

RPF Checks to see if the source address’s reverse path matches the input port.

If not OK, RPF drops the packet.
Unicast RPF Check

- Should be mandatory command on all ISP’s edge routers connecting customers to the Internet
  Part of IOS Essentials ISP router template
- Multihomed customers require a little more thought and planning
  Use BGP weight
  Use uRPF enhancements (ACL and FIB comparison) in 12.0(14)S

  ip verify unicast reverse-path <acl>
  ip verify unicast source reachable-via [any|rx] <acl>
Description of “Smurfing”

• Smurf is **Denial of Service** attack
  
  Network-based, fills access pipes

  Uses ICMP echo/reply packets with broadcast networks to multiply traffic

  Requires the ability to send spoofed packets

  Would hardly exist if ISPs used uRPF checks and disabled directed-broadcast on LANs

• Abuses “bounce-sites” to attack victims
  
  Traffic multiplied by a factor of 50 to 200
Description of “Smurfing”

- ICMP echo (spoofed source address of victim)
  Sent to IP broadcast address
- ICMP echo reply
Multiplied Bandwidth – Example

- Perpetrator has T1 bandwidth available (typically a cracked account), and uses half of it (768 Kbps) to send spoofed packets, half to bounce site 1, half to bounce site 2
- Bounce site 1 has a switched co-location network of 80 hosts and T3 connection to net
- Bounce site 2 has a switched co-location network of 100 hosts and T3 connection to net
Multiplied Bandwidth – Consequences

- (384 Kbps * 80 hosts) = 30 Mbps outbound traffic for bounce site 1
- (384 Kbps * 100 hosts) = 37.5 Mbps outbound traffic for bounce site 2
- Victim is pounded with 67.5 Mbps (!) from half a T1!
Profiles of Participants

• Typical Perpetrators
  Cracked superuser account on well-connected enterprise network
  Superuser account on university residence hall network (Ethernet)
  Typical PPP dial-up account (for smaller targets)

• Typical Bounce Sites
  Large co-location subnets
  Large switched enterprise subnets
  Typically scanned for large numbers of responding hosts

• Typical Victims
  IRC Users, Operators, and Servers
  Providers who eliminate troublesome users’ accounts
Prevention Techniques

• How to prevent your network from being the source of the attack:

  Apply filters to each customer network

    **Ingress:** Allow only those packets with source addresses within the customer’s assigned netblocks

  Apply filters to your upstreams

    **Egress:** Allow only those packets with source addresses within your netblocks to protect others

    **Ingress:** Deny those packets with source addresses within your netblocks to protect yourself
Prevention Techniques

• Filters will also prevent other forms of attacks as well

• If you do become a bounce site:

  Trace the traffic streams to the edge of your network, and work with your upstream or peer in order to track the stream further

    MCI’s DoSTracker tool

    Manual tracing/logging tips
Prevention Techniques

• How to suppress an attack if you’re the victim:

  Implement ACL’s at network edges to block ICMP echo responses to your high-visibility hosts, such as IRC servers

    Will impair troubleshooting -- “ping” breaks

    Will still allow your access pipes to fill

  Work with upstream providers to determine the help they can provide to you

    Blocking ICMP echoes for high-visibility hosts from coming through your access pipes

  Tracing attacks
Prevention Techniques

- CSCdj35407 – “fast drop” ACL code
  This feature optimizes the way that packets denied by an ACL are dropped within IOS, reducing CPU utilization for large amounts of denied traffic

- CSCdj35856 – ACL logging throttles
  This feature places a throttle in IOS which will allow a user to specify the rate at which logging will take place of packets which match a condition in an ACL where “log” or “log-input” is specified
DDoS versus DoS

- Same methods and tools as DoS
- Much larger scale attacks
  Elephant hunting
- Uses hundreds or even thousands of attacking points to overwhelm targets
- Very difficult to determine difference between DDoS and network outage
DDoS Links

- http://www.denialinfo.com/
- http://www.staff.washington.edu/dittrich
- http://www.sans.org/y2k/DDoS.htm
- http://cve.mitre.org/
More Information?
Where to get more information

- Supporting *Cisco ISP Essentials* Book
  
  [http://www.ispbook.com](http://www.ispbook.com)

- Check the CTO Consulting Engineering ISP Resources page:
  

- Join the cisco-nsp mailing list – set up by ISPs for ISPs
  
  send e-mail to majordomo@puck.nether.net with the words “subscribe cisco-nsp” in the body
For Further Reference…

- **Computer Networks, Third Edition**
  by Andrew Tanenbaum (ISBN: 0-13349-945-6)

- **Interconnections: Bridges and Routers**
  (second Ed)
  by Radia Perlman (ISBN: 0-20163-448-1)

- **Internetworking with TCP/IP, Volume 1:**
  Principles, Protocols, and Architecture

- **IP Routing Fundamentals**
  by Mark Sportack (ISBN: 1-57870-071-x)

- **IP Routing Primer**
For Further Reference...

- **Routing in the Internet**

- **OSPF Network Design Solutions**

- **ISP Survival Guide: Strategies for Running a Competitive ISP**
  by Geoff Huston (ISBN:0-47131-499-4)

- **Internet Routing Architectures: 2nd Edition**
  by Sam Halabi & Danny Mcpherson

- **Cisco ISP Essentials**
  by Barry Greene & Philip Smith
IOS Essentials

Essential Features every ISP should Consider

Version 3.0alpha