

measuring RF: dB math

Carlo Fonda and Marco Zennaro

wireless.ictp.it

wndw.net

wirelessU.org

relative concept

- decibels are a *relative* measurement unit unlike the absolute measurement of milliwatts
- the decibel (dB) is an expression of the relationship between a variable quantity and a known reference quantity
- the calculation of decibels uses a logarithm to allow very large or very small relations to be represented with a conveniently small number

from dB to dBm

- on the logarithmic scale, the reference cannot be zero because the log of zero does not exist!
- the reference point that relates the logarithmic decibel scale to the linear watt scale is:

1 mW = 0 dBm

the m in dBm refers to the fact that the reference value is 1 mW and therefore a dBm measurement is a measurement of absolute power

the math

to convert power [mW] to power [dBm]:

$$P[dBm] = 10 log_{10} P[mW]$$

to convert dBm to mW:

$$P[mW] = log_{10}^{-1} (P[dBm]/10) = 10^{(P[dBm]/10)}$$

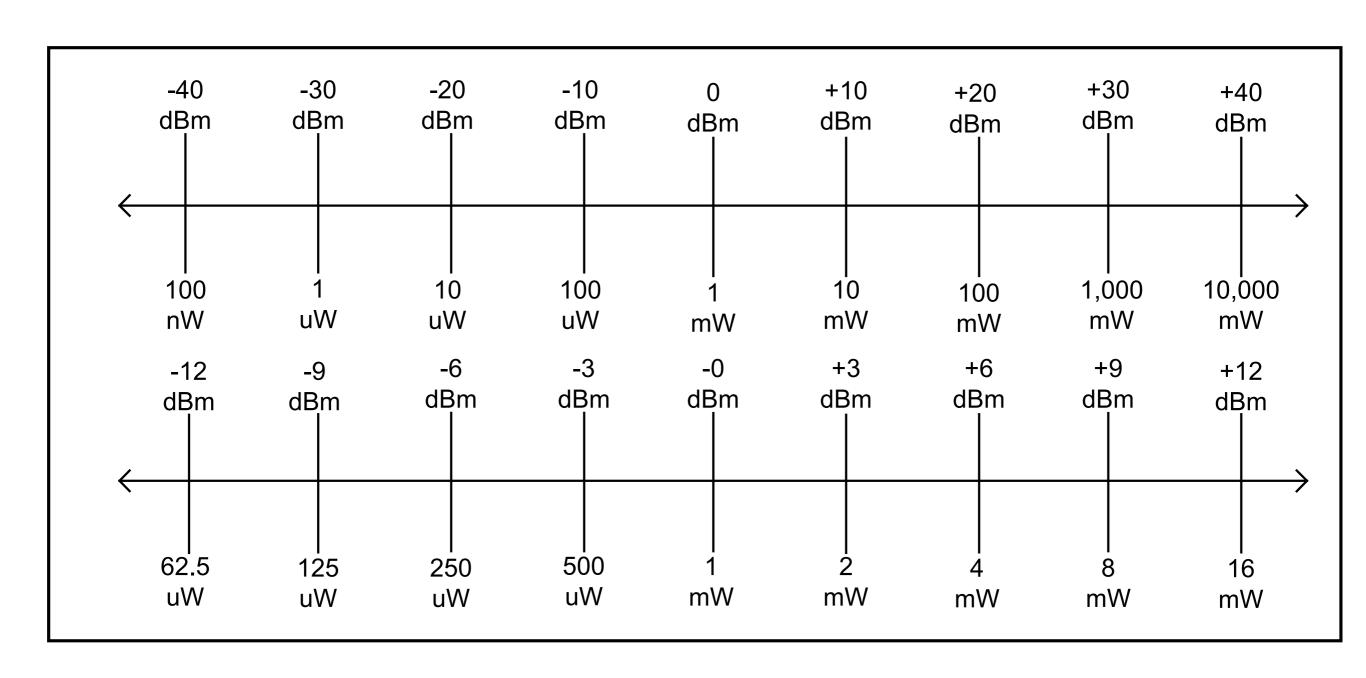
why log?

The dB is used rather than arithmetic ratios or percentages because:

- when circuits are connected in chain, expressions of power level, in dB, may be arithmetically added and/or subtracted
- logarithmic units preserve relative errors (in contrast to linear units that preserve absolute errors)

gains and losses

- gain or loss of signal power in an RF system may be referred to by absolute power measurement (i.e. 1W or 30dBm of power) or by a relative power measurement (i.e. half of its power, or -3dB)
- gains and losses in dB are additive

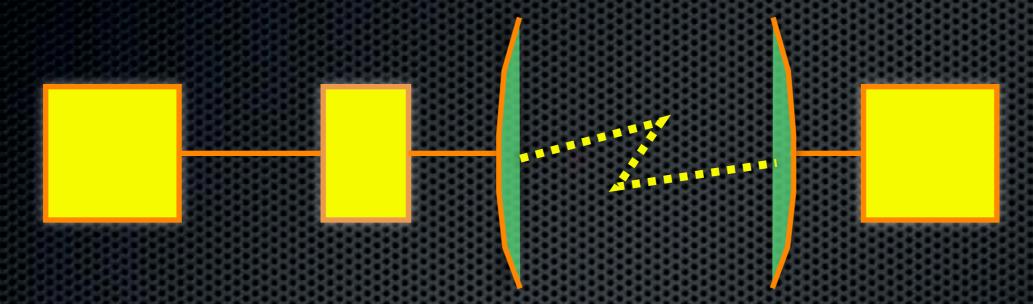

examples

- -3dB = half the power in mW
- **★ +3dB = double** the power in mW
- -10dB = one tenth the power in mW
- **★ +10dB = ten times** the power in mW

examples (2)

- \blacksquare 10 mW + 3 dB = 20 mW
- **■** 100 mW 3dB = 50 mW
- \blacksquare 10 mW + 10 dB = 100 mW
- $= 300 \, \text{mW} 10 \, \text{dB} = 30 \, \text{mW}$

dB math


from dBm to W

- **■** +43 dBm = ?
- +43dBm is 43dB relative to 1mW
- = 43dB = 10dB + 10dB + 10dB + 10dB + 3dB
- \blacksquare 1 mW x 10 = 10 mW
- **■** 10 mW x 10 x 10= 1000 mW
- 1000 mW x 10 = 10000 mW
- 10000 mW x 2 = 20000 mW = 20 W

negative doesn't man bad ;-)

- **■** -26 dBm = ?
- it's 1mW (0dBm) "minus" 26dB
- -26dB = -10dB 10dB 3dB 3dB
- $= 1 \text{ mW} / 10 = 100 \mu\text{W}$
- $= 100 \, \mu \text{W} / 10 = 10 \, \mu \text{W}$
- $10 \,\mu\text{W} / 2 = 5 \,\mu\text{W}$
- $5 \mu W / 2 = 2.5 \mu W$ (it's $2.5 \times 10^{-6} W$)

example: RF power budget

- Transmitter power (dBm)
- Cable loss (dB)
- Power Amplifier gain (dB)
- Cable loss (dB)
- Antenna gain (dB)

- Free Space Path loss (dB)
- Antenna gain (dB)
- Cable loss (dB)
- Result: power at receiver

origin of deciBel

The name decibel comes from the unit "Bel" and it is in honor of Alexander Graham Bell (1847-1922), a Scottish-born teacher of the deaf and American inventor of the telephone