Basic Radio Physics

Sebastian Büttrich, wire.less.dk edit: September 2009, Pokhara, Nepal

http://creativecommons.org/licenses/by-nc-sa/3.0/

Goals

- Understand electromagnetic waves used in wireless networking
- Understand the basic principles of their behaviour
- Apply this understanding to real life situations

Table of Contents

- Electromagnetic fields and waves
 - Characteristics
- The electromagnetic spectrum
- Electromagnetic effects
 - Absorption, reflection, diffraction, refraction, interference
- Propagation in free space
- Situations where physics really matters

Electromagnetic Waves

- Also known as Electromagnetic radiation
- A propagating wave in space with electrical
 (E) and magnetic (H) components
- E and H oscillate perpendicular to each other and to the direction of the propagation
- Examples: light, X-rays and radio waves

Electromagnetic Waves

Light Wave

 $\lambda = wavelength$

E = amplitude of electric field

M = amplitude of magnetic field

Electromagnetic Characteristics

- E and H fields
- No need for carrier medium
- Characterized by: Wavelength, frequency, polarization

A Wave

[image: from wikipedia.org]

Wavelength and Frequency

•
$$\mathbf{c} = \lambda$$
 * f

- c = the speed of light $(3x10^8 \text{ m/s})$ [m/s]
- λ = wavelength [m]
- f = frequency [1/s]

Wavelength and Frequency

- A radio wave with a frequency of 2.4 GHz has a wavelength of 12,5 cm
- Light (or a radio signal) needs travel time:
 - 1.3 seconds from the Moon to Earth
 - 8 minutes from the Sun
 - 300 microseconds for 100 km

Powers of Ten

Prefix	Quantity		Symbol
Nano	10-9	1/ 1,000,000,000	n
Micro	10-6	1/1,000,000	μ
Milli	10-3	1/1,000	m
Centi	10-2	1/100	С
Kilo	10^3	1,000	k
Mega	10^{6}	1,000,000	M
Giga	109	1,000,000,000	G

Polarization

linear elliptical

circular

[Source: wikipedia.org]

Dipole Radiation

[Source: wikipedia.org]

The Electromagnetic Spectrum

[Source: wikipedia.org]

Use of Electromagnetic Spectrum

Use of Electromagnetic Spectrum

Frequencies in Wireless Networking

Frequency	Standard	Wavelength
2.4 GHz	802.11 b/g	12,5 cm
5.x GHz	802.11a	5-6 cm

Propagation of Radio Waves

- Wavefronts
- Huygens principle
 - -"At any point of a wave, spherical waves start"
- Radio waves are not strictly a straight line

Radio Wave Effects

- Absorption
- Reflection
- Diffraction
- Refraction
- Interference

Absorption

- Loss of energy to the medium that the wave is travelling through
- The power decreases exponentially
- An absorption coefficient [dB/m] is used to measure the loss
- Strong absorption
 - Metal and water (conducting materials)
 - Stones, bricks and concrete

Reflection

- Metal and water surface
- Angle in = Angle out

Diffraction

- Waves do not propagate in a single direction
- Waves diverge into wider beams
- Implies that waves can be "bent" around corners
- Direct consequence of the Huygens principle
- Scales roughly with the wavelength

Diffraction

Diffraction

- Waves bend easier the longer the wavelength
- AM Radio station operating at 100 kHz can easily be received far away $(\lambda = 3,000 \text{ m})$
- In wireless communication at 2.4 GHz the wavelength is 12,5 cm

Refraction

- The apparent "bending" of waves when they meet an obstacle with a different density
- A wave that moves from one medium to another of a different density, changes speed and direction when entering the new medium

Refraction

Interference

- Same frequency
- Fixed phase relation

Frequency Dependence: Rules of thumb

- The lower frequency, the further it goes
- The lower frequency, the better it goes through and around things
- The higher frequency, the more data it can transport

Radio Propagation in Free Space

- Free Space Loss (FSL)
- Fresnel Zones
- Line of Sight
- Multipath Effects

Free Space Loss (FSL)

- Power loss is proportional to the square of the distance and proportional to the square of the frequency
- $FSL(dB) = 20log_{10}(d) + 20log_{10}(f) + K$
- d = distance
- f = frequency
- K = constant depending on the units used for d and f

Free Space Loss (FSL)

- d is measured in meters
- f is measured in Hz
- $FSL(dB) = 20log_{10}(d) + 20log_{10}(f) 147.5$

Free Space Loss (FSL)

- Rules of the thumb for 2.4 Ghz wireless networks:
 - 100 dB are lost in the first kilometre
 - 6 dB every time that the distance doubles
 - 2 km: loss of 106 dB
 - 4 km: loss of 112 dB
 - 10 km: loss of 120 dB
 - 100 km: loss of 140 dB

Fresnel Zones

$$r = 17,32 * \sqrt{(d/4f)}$$

d = distance [km]

f= frequency [Ghz]

r= radius [m]

Line of Sight (LOS)

•In general, you need to have a free line of sight (LOS) for a radio link ... and bit of space around it

Multipath Effects

- A signal can reach a receiver via many paths
- Delays, partial modification and interference of signals can cause problems
- By taking advantage of multipaths, you can overcome the limits of line of sight
- MIMO (802.11n) is using multipath effects

Where physics matters

- 1. When an access point is placed under a desk
- 2. When winter turns to spring
- 3. When it is rush hour in the city
- 4. When implementing very long distance links
- 5. When you need to tell marketing talk from the truth

Example 1: Office network

- Typically have massively multipath conditions
- Problems with objects
 - People (water-filled moving objects)
 - Metal infrastructure (PCs, radiators, desks, CDs)
- The choice of locations and antennas is essential

Example 2: Winter turns to spring

- Regardless of your climate zone, factors like vegetation, humidity, rain will change
- Dry trees might be transparent but green trees are not

Example 3: Rush hour in the city

- In urban environments, conditions can change dramatically with the hour
 - People (70% water), vans, cars, electromagnetic interference
- You should always verify on a monday what you measure on a sunday

Example 4: Long Distance Links

- The travel time of the signal might lead to timeout and performance losses
- Depending on the hardware, this may become relevant already at 1-2 km
- A typical indicator of timeout problems is high packet loss in spite of a good radio signal

Example 5: Marketing Talk

- An antenna or a radio device never has a reach or distance. Reliable parameters are:
 - Gain of the antenna
 - TX power of the radio card
- Even with WiMAX promising NLOS, microwaves still do not go through absorbing materials
 - Robust modulation techniques can let you "go round corners

Conclusion

- We identified the carrier in wireless networking as electromagnetic waves in the GHz range.
- We understand the basics of wave propagation, absorption, reflection, diffraction, reflaction and interference, and their implications.
- We can apply this knowledge to real life cases as well as to marketing lies.