
 

AfNOG 2003

The Exim Mail Transfer Agent

(A brief introduction)

http://www.exim.org



Configuration file

� Exim uses a single runtime configuration file, which is 
divided into a number of sections

� The first section contains global option settings

� The other sections start with “begin sectionname”

� They are optional, and may appear in any order

� Comments, macros, and inclusions are available

� Option settings can refer to auxiliary data files, for 
example, a file of aliases (usually /etc/aliases)



Changing the runtime configuration

� Edit /usr/exim/configure with your favourite text editor

� New Exim processes will pick up the new file right away

� You need to SIGHUP the daemon to restart it

kill -HUP `cat /var/spool/exim/exim-daemon.pid`

� Check the log to see if it restarted successfully

tail /var/spool/exim/log/mainlog



Configuration file sections

� Global options
General and input-related options

� Address rewriting rules
Specify rewriting of envelope and header addresses

� Retry rules
Control retries after temporary failures

� Router configuration
Specify recipient address processing

� Transport configuration
Specify how actual deliveries are done

� Authenticator configuration
Specify SMTP authentication methods

� Access Control Lists (ACLs)
Define policy for incoming SMTP 



Default configuration file layout

Global option settings
begin ACL
Access control lists
begin routers
Router configuration
begin transports
Transport configuration
begin retry
Retry rules
begin rewrite
Rewriting rules
begin authenticators
Authenticator configuration

required for SMTP input

required for message delivery



Examples of common global options

� SMTP input limits
smtp_accept_max = 200
smtp_accept_queue = 150
smtp_accept_reserve = 10
smtp_reserve_hosts = 192.168.0.0/16
smtp_connect_backlog = 100

� Overloading
queue_only_load = 5
deliver_queue_load_max = 7

� Message size limits
message_size_limit = 10M
return_size_limit = 65535



Exim 4 routers

� Exim contains a number of different routers
Example: the dnslookup router does DNS processing
                 the redirect router does address redirection
                                     (aliasing and forwarding)

� The configuration defines which routers are used, in 
which order, and under what conditions
Example: routers are often restricted to specific domains

� The same router may appear more than once, usually 
with different configurations

� The order in which routers are defined matters



Address

Exim 4 routing
 

First
router

Check
preconditions

router fails
address

Second router
Third router
Fourth router

...
Last router

  address 
  bounces

router
declines

More?

yes

no

address
retried later

router
defers
address

retry timeout

redirection
creates new
addresses

Queue for
transport

router accepts
address



Simple routing configuration

� Check for non-local domain: run dnslookup router
Accept: queue for smtp transport
Decline: “no_more” set => address bounces

� Check for system aliases: redirect  router
Accept: generates new address(es)
Decline: passed to next router

� Check for local user forwarding: another redirect router
Accept: generates new address(es)
Decline: passed to next router

� Check for local user: run accept router
Accept: queue for appendfile transport

� No more routers => address bounces



Exim transports

� Transports are the components of Exim that actually 
deliver copies of messages
The smtp transport delivers over TCP/IP to a remote host
The appendfile transport writes to a local file
The pipe transport writes to another process via a pipe
The lmtp transport does likewise, using LMTP
The autoreply transport is anomalous, in that it creates an
  automatic response instead of doing a real delivery

� The order in which transports are defined is unimportant

� A transport is used only when referenced from a router

� Transports are run in subprocesses, under their own uid, 
after all routing has been done



Default routers (1)

� The first router handles non-local domains
dnslookup:
  driver = dnslookup
  domains = ! +local_domains
  ignore_target_hosts = 127.0.0.0/8
  transport = remote_smtp
  no_more

� The precondition checks for a nonlocal domain

� Silly DNS entries are ignored

� If the domain is found in the DNS, queue for remote_smtp

� Otherwise, no_more changes “decline” into “fail”



Default routers (2)

� The second router handles system aliases
system_aliases:
  driver = redirect
  data = ${lookup{$local_part}lsearch\
         {/etc/aliases}}

� Alias file lines look like this
postmaster:  pat, james@otherdom.example

  allow_fail
  allow_defer

retired:     :fail: No longer works here

allows :fail:

allows :defer:

  pipe_transport = address_pipe
  file_transport = address_file
  user = exim

majordomo:   |/usr/bin/majordom ...

 



Default routers (3)

� The third router handles users' .forward files
userforward:
  driver = redirect
  check_local_user
  file = $home/.forward
  no_verify
  pipe_transport = address_pipe
  file_transport = address_file
  reply_transport = address_reply
  allow_filter

� data and file are mutually exclusive options for redirect
data expands to a redirection list
file expands to the name of a file containing such a list



Default routers (4)

� The final router handles local user's mailboxes
localuser:
  driver = accept
  check_local_user
  transport = local_delivery

� Recap - an address is routed like this:
Remote address => remote_smtp transport
System alias     => new address(es), fail, defer
User's .forward => new address(es)
Local user         => local_delivery transport
Unrouteable address => bounce

� This is just one out of many posssible configurations



Default transports (1)

� Main transports
remote_smtp:
  driver = smtp

local_delivery:
  driver = appendfile
  file = /var/mail/$local_part
  delivery_date_add
  return_path_add
  envelope_to_add
# group = mail
# mode = 0660

� Default assumes a “sticky bit” directory
Setting group and mode is an alternate approach



Default transports (2)

� Auxiliary transports
address_pipe:
  driver = pipe
  return_output

address_file:
  driver = appendfile
  delivery_data_add
  return_path_add
  envelope_to_add

address_reply:
  driver = autoreply



Routing to smarthosts

� Replace the first router with this
send_to_smarthost:
  driver = manualroute
  domains = ! +local_domains
  route_list = * smart-host1.example:\
                 smart-host2.example
  transports = route_smtp

� A route_list rule contains three space-separated items
The first is a domain pattern: * matches any domain
The second is a list of hosts for the matching domains
The third is byname (default) or  bydns

� Set hosts_randomize to sort the hosts randomly each time



Virtual domains

� Straightforward cases are just aliasing
virtual_domains:
  driver = redirect
  domains = lsearch;/etc/virtuals
  data = ${lookup{$local_part}lsearch\
         {/etc/aliases-$domain}}
  no_more

� An alias with no domain assumes the local qualify domain
philip:  ph10
jc:      julius@other.domain.com



Access control lists

� ACLs are relevant only for SMTP input
But they do apply to local SMTP (-bs and -bS)

� For incoming SMTP messages
acl_smtp_rcpt defines the ACL to be run for each RCPT 
   Default is “deny”
acl_smtp_data defines the ACL to be run after DATA
   Default is “accept”

� Tests on message content can only be done after DATA

� Other ACLs can be used for AUTH, ETRN, EXPN, VRFY



A simple ACL

acl_smtp_rcpt = acl_check_rcpt

begin acl

acl_check_rcpt:
  accept   local_parts = postmaster
           domains     = +my_domains

  require  verify      = sender

  accept   domains     = +my_domains
           verify      = recipient

� Implicit “deny” at the end



Named item lists

domainlist local_domains  = @ : plc.com
hostlist   relay_hosts    = 192.168.32.0/24

� Abstraction: list is specified in one place only
References are shorter and easier to understand

� Optimization: matches in named lists are cached
Example: several routers testing the same domain list

� A named list is referenced by prefixing its name with +
hosts = 127.0.0.1 : +relay_hosts

� A named list can be negated
domains = !+local_domains

This is not possible with macros



ACL statements

� Each statement contains a verb and a list of conditions
verb     condition 1                    (one per line)
            condition 2
            ...

� If all the conditions are satisfied
accept Allows the SMTP command to proceed (else may pass  
         or reject - see next slide)
deny Rejects (else passes)
require Passes (else rejects)
warn Takes some warning action (e.g. logs or adds header)
 Always passes



ACL modifiers

� message defines a custom message for a denial or warning
deny    message  = You are black listed at \
                   $dnslist_domain
        dnslists = rbl.mail-abuse.org : ...

� log_message defines a custom log message
require log_message = Recipient verify failed
        verify   = recipient

� endpass is used with the accept verb for a 3-way outcome
accept  domains  = +local_domains
        endpass
        verify   = recipient

Above endpass, failure causes the next statement to be run
Below endpass, failure causes rejection



The default ACL
acl_check_rcpt:
  accept  hosts       = :
  deny    local_parts = ^.*[@%!|/] : ^\\.
  accept  local_parts = postmaster
          domains     = +local_domains
  require verify      = sender
  accept  domains     = +local_domains
          endpass
          message     = unknown user
          verify      = recipient
  accept  domains     = +relay_to_domains
          endpass
          message     = unrouteable address
          verify      = recipient
  accept  hosts       = +relay_from_hosts
  accept  authenticated = *
  deny    message     = relay not permitted



Good and bad relaying

Your host

Arbitrary 
domainsOpen

relay

Arbitrary 
remote hosts

Specific
domains

Incoming
relay

relay_to_domains

Specific
hosts

Outgoing
relay

relay_from_hosts
+

Authenticated hosts



Message filtering

� Exim supports three kinds of filtering
User filter: run while routing (“.forward with conditions”)
System filter: run once per message
Transport filter: external program added to transport

� User and system filters are run for each delivery attempt
If delivery is deferred, filters run more than once

� User and system filters use the same syntax
System filter has some additional commands (fail , freeze)
They can be enabled for redirection filters

� Exim also supports a local_scan() function
Local C code can inspect a message at the point of arrival



User filter example

# Exim filter
# Don't touch bounces
if error_message then finish endif
# Throw away junk
if
  $h_subject: contains "Make money" or
  $sender_address matches \N^\d{8}@\N or
  $message_body contains "this is spam"
then seen finish endif
# Auto-reply
if personal alias ph10@cam.ac.uk then
  mail subject "Re: $h_subject:"
  file $home/auto-reply/message
  log  $home/auto-reply/log
  once $home/auto-reply/once
endif



Filter commands

� deliver does “true” forwarding (sender does not change)

� save delivers to a named file

� pipe delivers via a pipe to a given command

� mail generates a new mail message

� logwrite writes to a log file

� deliver, save, and pipe are significant by default
Can be made not significant by unseen

� logwrite happens during filtering

� The others are just set up during filtering and happen later
The result of pipe is not available during filtering

� Sysadmin can lock out a number of filter facilities
save, pipe, mail, and logwrite commands 
existence tests, lookups, Perl, readfile, run in expansions



The system filter

� Runs once per message, at every delivery start
Use first_delivery  to detect very first time
Can see all recipients in $recipients

� Can add to recipients or completely replace recipients
Non-significant delivery adds, significant delivery replaces

� Can add header lines that are visible to the routers,                 
  transports, and user filters

� Can remove header lines

� Can freeze message or bounce it

� Set up by
system_filter = /etc/exim/sysfilter
system_filter_file_transport = address_file
system_filter_pipe_transport = address_pipe
system_filter_user = exim



Large installations

� Use a local name server with plenty of memory

� Exim is limited by disc I/O
Use fast disc hardware
Put hints on RAM disc
Set split_spool_directory
Use multiple directories for user mailboxes

� Avoid linear password files

� Use maildir format to allow parallel deliveries

� Plan to expand “sideways” with parallel servers
This also helps add more disc access capacity

� Separate incoming and outgoing mail

� Keep output queue as short as possible
Use fallback hosts and/or $message_age for several levels



Separating mail functions

Internet

Inserver2 Outserver2Outserver1Inserver1

Fileserver(s)
(Mailboxes,

Dial-in queue)

Dial-in SMTP
deliverer

POP/IMAP
server

Clients' SMTP boxes

Clients' POP/IMAP boxes

Long-term
outserver


