	Reverse DNS	Outline		
_	Presented by Joe Abley SANOG 4, 2004	 General introduction IPv4 reverse DNS Revere mapping and relation Problems and solutions for IPv6 reverse DNS 		
	American Registry for Internet Numbers			
ideset 7	February-March 2002	February March Biblet 7.2	Jump to first page \diamondsuit	

Addresses in the DNS

- Mapping from numbers to names
- It is just ordinary DNS
 - No different standards
 - No different operation
- But you might need a little background
 - There are some conventions
 - IPv6 is a moving/developing target
- First IPv4

February-March

February-Marc 2099/set 7 -5

slide

lump to first page 💠 🗘

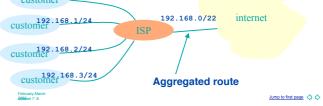
Jump to first page 🖒 🖒

Mapping of addresses to reverse

- Mapping from names to addresses is common: bert.secret-wg.org A 193.0.0.4
- Sometimes one wants to know which name comes with a given address. If you can translate the address to a FQDN one can use the DNS
- Design goal: Delegate maintenance of the reverse DNS to the owner of the address block

mp to first page 💠 🖒

Mapping the IPv4 address into the DNS: address allocation


- Address allocation is hierarchical:
 - blocks of addresses are allocated to LIRs/ISPs
 - smaller blocks are allocated to client
 - clients will assign address blocks to end users
- Routing is based on destinations for given address blocks
 - Historically on 8 bit boundaries (Class A,B,C)
 - Classless Inter Domain Routing (CIDR)

Classless inter domain routing (CIDR)

- Routing table size (router memory) is a limited resource
- Goal of CIDR: aggregate many small address block into one larger block

192.168.0/24 customer

February-March 3998/set 7 -4

Mapping the IPv4 address into the DNS: address blocks

IPv4 address format

 An IP address is a 4 byte number normally represented by the decimal representation of the 4 bytes separated by dots

 With allocation on 8 bit boundaries this leads to a simple delegation scheme

Mapping the IPv4 address into the DNS

- Example 192.26.1.3
 - 192/8 is allocated to a RIR
 - 192.26/16 is allocated by RIR to LIR/ISP
 - 192.26.1/24 is assigned by ISP to a company.
- Delegation in the DNS:
 - root delegates 192 domain to RIR
 - RIR delegates "26" sub-zone to ISP
 - ISP delegates "1" sub-zone to company.
- Name that makes this possible: 1.26.192

February-Marc 3988set 7 -9

February-Ma 2060ket 7 -7

imp to first page 💠 🖒

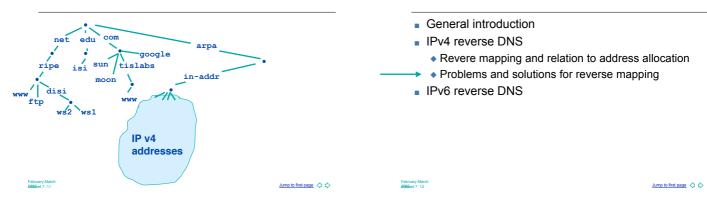
Jump to first page 💠 🖒

Mapping addresses to names

- Revert the decimal representation:
 - 192.26.1.3 maps to 3.1.26.192 and put this under a top level domain.
 - For IPv4 this TLD is in-addr.arpa

Outline

- In the DNS one publishes PTR records to point back to the name:
- 4.0.0.193.in-addr.arpa 3600 IN PTR bert.secret-wg.org.



February-Mar 2002eet 7 -8

Jump to first page 💠 🗘

Jump to first page 🧔 🗘

The reverse tree

Mapping address to names: mapping problems

Jump to first page

- In IPv4 the mapping is done on 8 bit boundaries (class full), address allocation is class less
- Zone administration does not always overlap address administration
- If you have a /19 of address space: divide it in /24s and request a delegation for each one of them as soon as you use the address space
- /25 and smaller we will cover later

February-Marc 2060et 7 -13

February-Mar 2062-ot 7 - 17

Setting your reverse zones

- The reverse zone file is a regular zone file.
 SOA and NS RRs in the APEX
 - Mostly PTR records in the zone itself
- Make sure the zone is served by the masters and slaves
- Bind9 has a \$GENERATE directive that might be handy

A reverse zone example

Getting a reverse delegation

- The procedure is registry dependent
 - For APNIC region read: <u>http://www.apnic.net/db/revdel.html</u> <u>http://www.apnic.net/services/dns_guide.html</u>
- Get a delegation from APNIC by filling adding a whois domain object: http://www.apnic.net/db/domain.html
- Only /16 and /24 delegations

February-March 3998set 7 -16

February-Marc

February-Marc 2002eet 7 -14

Jump to first page $\diamondsuit \diamondsuit$

Jump to first page 💠 🖒

Whois domain object

<pre>domain: descr: admin-c: tech-c: zone-c: nserver:</pre>	28.12.202.in-addr.arpa in-addr.arpa zone for 28.12.202.in-addr.arpa DNS3-AP DNS3-AP ns.telstra.net
nserver:	rs.arin.net
nserver:	ns.myapnic.net
nserver:	<pre>svc00.apnic.net</pre>
nserver:	ns.apnic.net
mnt-by:	MAINT-APNIC-AP
mnt-lower:	MAINT-DNS-AP
changed:	inaddr@apnic.net 19990810
source:	APNIC

Allocations smaller than /24

- Imagine a /25 address block delegated to a company by an ISP
- The company wants to maintain the reverse mapping of the address they use
- In the reverse DNS one can not delegate
- Use the 'classless inaddr' technique described in RFC 2317
- Based on the use of CNAME RRs
 - CNAME provide a means to alias names to another namespace

RFC2317 explained (1)

192.0.2.0/25 to \$ORIGIN 2.0.192.in-addr.arpa. organization A, PTR host1.organizationA.com 192.0.2.128/26 to 1 2 PTR host2.organizationA.com. organization B and 3 PTR host3.organizationA.com. 192.0.2.192/26 to 129 host1.organizationB.com. host2.organizationB.com. PTR organization C 130 PTR 131 PTR host3.organizationB.com. ; 193 PTR host1.organizationC.com. 194 PTR 195 PTR

February-Marc 2002et 7 - 19

host2.organizationC.com. host3.organizationC.com.

Jump to first page 💠 🖒

RFC2317 explained (2)

- Generate a 'sub domain' for each address block and delegate these to the children
 - Name the sub domain after the address block
 - + 0/25, 128/26, and 190/26
 - ◆ 0-127, 128-189, 190-255
 - orgA, orgB, orgC
- For each name in the zone create a CNAME that points into the delegated namespace e.g.:

1 CNAME 1.orgA.2.0.193.inaddr-arpa.

February-March 2009set 7 - 20 Jump to first page 💠 🖒

RFC2317 explained(4) Children's zone

\$ORIGIN 2.0.192.in-addr.arpa.			<pre>\$ORIGIN orgA.2.0.192.in-addr.arpa.</pre>				
6	IN SOA	my-ns.my.domain. (6	IN	SOA	ns1.organizationA.com. (
		hostmaster.my.domain.					hostmaster.organizationA.com.
))
;				;			
orgA	NS nsl.orga	nizationA.com.		0	NS na	s1.orga	nizationA.com.
	NS ns2.orga	nizationA.com.			NS na	s2.orga	nizationA.com.
1	CNAME	1.orgA		1	PTR	host	1.organizationA.com.
2	CNAME	2.orgA		2	PTR	host	2.organizationA.com.
;							
orgB	NS nsl.orga	nizationB.com.					
	NS ns2.orga	nizationB.com.					
129	CNAME	129.orgB					
130	CNAME	130.orgB					
;							
ebruary-March			Jump to first page 🗇 🖒	February-March			Jump to first page

RFC2317 explained(5)

- You could also delegate to a forward zone
- Eases maintaining consistency in mapping

\$ORIGI	N 1.168.1	192.in-addr.arpa	\$ORIGIN foo.net.
;			;
;			www A 192.168.1.24
24	CNAME	<pre>in24.foo.net.</pre>	in24 PTR www.foo.net.
25	CNAME	<pre>in25.foo.net.</pre>	ftp A 192.168.1.25
26	CNAME	<pre>in26.foo.net.</pre>	in25 PTR ftp.foo.net.
27	CNAME	in27.foo.net.	silver A 192.168.1.26
28	CNAME	in28.foo.net.	in26 PTR silver.foo.net.
;			÷
; etc			; etc
February-March 2090-417-23			Jump to first page 🗸

Outline

- General introduction
- IPv4 reverse DNS
- IPv6 reverse DNS
 - IPv6 addresses
 - IPv6 in the forward tree
 - IPv6 in the reverse tree

February-Marc 2009set 7 -24

IPv6 addresses

- 128 bits
 - 64 low order bits "host" identifier
 - + e.g. a mapping of the hosts' Ethernet address
 - 64 high order bits "network" identifier
 Further subdivision inside network id.
- Let's look at notation first, then at further subdivision

Februar	y-March
2009ket	7 -25

Jump to first page $\Leftrightarrow \diamondsuit$

IPv6 address Notation

- 16 bit integers (in Hex) separated by colons
 FEDC: BA98:7654:3210:FEDC: BA98:7654:3210
 1080:0000:0000:0000:0008:0800:200C:417A
- Leading zeros can be skipped 1080:0:0:0:8:800:200C:417A
- Consecutive NULL 16-bit numbers → "::" 1080::8:800:200C:417A

IPv6 addresses

- For globally routable unicast addresses the 1st 3 bits are set to "001"
- Unicast addresses are further subdivided in "aggregates"
- More address classes available like:
 - Link local: fe80/10
 - Multicast: ff00/8
 - Mapped IPv4 address: 0::ffff:0:0:0:0/96

February-March

mp to first page 💠 🖒

Globally routable unicast addresses

- 1st 3 bits are format prefix
- last 16 bits of network ID are used for 'sites'
 /48 assigned to end-users.
- RIRs minimum allocation size: /32 blocks
- The policy still moving target

13	45	16	64 bits	1
FP 			Interface ID	ļ
++		+		-+

February-March 3986/set 7 -28

February-March 2009set 7 -26

Jump to first page 💠 🗘

Jump to first page 💠 🖒

Outline

- General introduction
- IPv4 reverse DNS
- IPv6 reverse DNS
 - IPv6 addresses
 - IPv6 in the forward tree
 - IPv6 in the reverse tree

IPv6 address representation in the DNS

- Multiple RR records for name to number
 - AAAA
 - A6 (Deprecated)
- Multiple ways to map address to DNS name
 - nibble notation
 - bit strings and nibbles (Deprecated)

February-Marc 2009/set 7 - 29 Jump to first page 💠 🖒

February-March 2999/set 7 - 30

AAAA RR

- Name to number mapping
- Similar to A RR for IPv4
- Uses the 'common' representation of the address

<pre>\$ORIGIN example.com. host 3600 IN AAAA 2001:238:f00:80:230:65ff:fe28:40</pre>	0£5	 IPv6 addresses IPv6 in the forward tree IPv6 in the reverse tree ribbles in ip6.arpa 	
February March 806/set 7-31	Jump to first page 💠 t	February Alarch 600/bet 7-32	Jump to first page 💠 💠

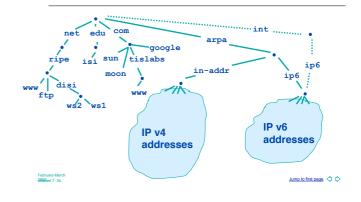
Reverse DNS

- Just as with IPv4 the responsibility for maintaining the reverse map can be delegated through the address hierarchy
- Number is translated into 4 bit nibbles under the ip6.arpa (ip6.int) TLD.

2001:0238::a00:46ff:fe06:1460 maps to:

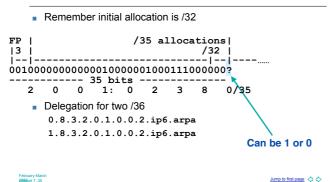
0.6.4.1.6.0.e.f.f.f.6.4.0.0.a.0.0.0.0.0.0.0.0.0.8.3.2.0.1.0.0.2.ip6.arpa.

February-March


The reverse tree

Outline

General introduction


IPv4 reverse DNS

IPv6 reverse DNS

Setting up reverse for SUB TLA

np to first page 💠 💠

DNS data and the transport layer

- In principle the transport layer does not have influence on DNS data;
 - Data can be published by servers running on IPv4 or IPv6, content should not differ
 - Transition problem: IPv6 client might not be able to see IPv6 servers and vice verse
 - Transition problems are by far not solved
- Exception to above: IPv4 mapped addresses
 - Mapping is depended on OS libraries

Questions

Let's do it.....

February-March

 $\underline{\mathsf{Jump to first page}} \, \diamondsuit \, \mathbf{t} \rangle$