BGP Multihoming

ISP/IXP Workshops
Why Multihome?

• Redundancy

One connection to internet means the network is dependent on:

Local router (configuration, software, hardware)

WAN media (physical failure, carrier failure)

Upstream Service Provider (configuration, software, hardware)
Why Multihome?

• Reliability

 Business critical applications demand continuous availability

 Lack of redundancy implies lack of reliability implies loss of revenue
Why Multihome?

• Supplier Diversity
 Many businesses demand supplier diversity as a matter of course
 Internet connection from two or more suppliers
 With two or more diverse WAN paths
 With two or more exit points
 With two or more international connections
 Two of everything
Why Multihome?

- Not really a reason, but oft quoted...
- Leverage:
 - Playing one ISP off against the other for:
 - Service Quality
 - Service Offerings
 - Availability
Why Multihome?

• Summary:

Multihoming is easy to demand as requirement of any operation

But what does it really mean:

In real life?
For the network?
For the Internet?
And how do we do it?
Multihoming Definition

- More than one link external to the local network
 - Two or more links to the same ISP
 - Two or more links to different ISPs
- Usually two external facing routers
 - One router gives link and provider redundancy only
Multihoming

- The scenarios described here apply equally well to end sites being customers of ISPs and ISPs being customers of other ISPs

- Implementation detail may be different

 end site \rightarrow ISP
 ISP controls config
 ISP1 \rightarrow ISP2
 ISPs share config
AS Numbers

• An Autonomous System Number is required by BGP
• Obtained from upstream ISP or Regional Registry (RIR)
 AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC
• Necessary when you have links to more than one ISP or an exchange point
• 16 bit integer, ranging from 1 to 65534
 Zero and 65535 are reserved
 64512 through 65534 are called Private ASNs
Private-AS – Application

- Applications
 - An ISP with customers multihomed on their backbone (RFC2270)
 - A corporate network with several regions but connections to the Internet only in the core
 - Within a BGP Confederation
Private-AS – removal

- Private ASNs MUST be removed from all prefixes announced to the public Internet
 Include configuration to remove private ASNs in the eBGP template
- As with RFC1918 address space, private ASNs are intended for internal use
 They should not be leaked to the public Internet
- Cisco IOS
 `neighbor x.x.x.x remove-private-AS`
Configuring Policy

• Assumptions:
 prefix-lists are used throughout
easier/better/faster than access-lists

• Three BASIC Principles
 prefix-lists to filter prefixes
 filter-lists to filter ASNs
 route-maps to apply policy

• Route-maps can be used for filtering, but this is more “advanced” configuration
Policy Tools

- Local preference
 outbound traffic flows
- Metric (MED)
 inbound traffic flows (local scope)
- AS-PATH prepend
 inbound traffic flows (Internet scope)
- Communities
 specific inter-provider peering
Originating Prefixes: Assumptions

- **MUST** announce assigned address block to Internet
- **MAY** also announce subprefixes – reachability is not guaranteed
- Current RIR minimum allocation is /21
 - Several ISPs filter RIR blocks on this boundary
 - Several ISPs filter the rest of address space according to the IANA assignments
 - This activity is called “Net Police” by some
Originating Prefixes

- Some ISPs publish their minimum allocation sizes per /8 address block:
 - AfriNIC: www.afrinic.net/docs/policies/afpol-v4200407-000.htm
 - APNIC: www.apnic.net/db/min-alloc.html
 - ARIN: www.arin.net/reference/ip_blocks.html
 - LACNIC: lacnic.net/en/registro/index.html
 - RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html
 Note that AfriNIC only publishes its current minimum allocation size, not the allocation size for its address blocks.

- IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:
 www.iana.org/assignments/ipv4-address-space

- Several ISPs use this published information to filter prefixes on:
 - What should be routed (from IANA)
 - The minimum allocation size from the RIRs
“Net Police” prefix list issues

- meant to “punish” ISPs who pollute the routing table with specifics rather than announcing aggregates
- impacts legitimate multihoming especially at the Internet’s edge
- impacts regions where domestic backbone is unavailable or costs $$$ compared with international bandwidth
- hard to maintain – requires updating when RIRs start allocating from new address blocks
- don’t do it unless consequences understood and you are prepared to keep the list current
Multihoming Options
Multihoming Scenarios

- Stub network
- Multi-homed stub network
- Multi-homed network
- Configuration Options
Stub Network

- No need for BGP
- Point static default to upstream ISP
- Upstream ISP advertises stub network
- Policy confined within upstream ISP’s policy
Multi-homed Stub Network

- Use BGP (not IGP or static) to loadshare
- Use private AS (ASN > 64511)
- Upstream ISP advertises stub network
- Policy confined within upstream ISP’s policy
Multi-Homed Network

- Many situations possible
 - multiple sessions to same ISP
 - secondary for backup only
 - load-share between primary and secondary
 - selectively use different ISPs
Multiple Sessions to an ISP

- Several options
 - ebgp multihop
 - bgp multipath
 - cef loadsharing
 - bgp attribute manipulation
Multiple Sessions to an ISP – Example One

- Use eBGP multihop
 eBGP to loopback addresses
 eBGP prefixes learned with loopback address as next hop

- Cisco IOS
  ```
  router bgp 65534
  neighbor 1.1.1.1 remote-as 200
  neighbor 1.1.1.1 ebgp-multihop 2
  
  !
  ip route 1.1.1.1 255.255.255.255 serial 1/0
  ip route 1.1.1.1 255.255.255.255 serial 1/1
  ip route 1.1.1.1 255.255.255.255 serial 1/2
  ```
Multiple Sessions to an ISP – Example One

• Try and avoid use of ebgp-multihop unless:
 It’s absolutely necessary – or –
 Loadsharing across multiple links

• Many ISPs discourage its use, for example:

 We will run eBGP multihop, but do not support it as a standard offering because customers generally have a hard time managing it due to:
 • routing loops
 • failure to realise that BGP session stability problems are usually due connectivity problems between their CPE and their BGP speaker
Multiple Sessions to an ISP bgp multi path

- Three BGP sessions required
- limit of 6 parallel paths

```
router bgp 201
  neighbor 1.1.2.1 remote-as 200
  neighbor 1.1.2.5 remote-as 200
  neighbor 1.1.2.9 remote-as 200
  maximum-paths 3
```
Multiple Sessions to an ISP

- Use eBGP multi-path to install multiple paths in IP table

  ```
  router bgp 201
  maximum-path <1-6>
  ```

- Load share over the alternate paths
 per destination loadsharing
Multiple Sessions to an ISP

- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing
 - Point default towards one ISP
 - Learn selected prefixes from second ISP
 - Modify the number of prefixes learnt to achieve acceptable load sharing
- No magic solution
Preparing the network

Before we begin...
Preparing the Network

- We will deploy BGP across the network before we try and multihome
- BGP will be used therefore an ASN is required
- If multihoming to different ISPs, public ASN needed:

 Either go to upstream ISP who is a registry member, or
 Apply to the RIR yourself for a one off assignment, or
 Ask an ISP who is a registry member, or
 Join the RIR and get your own IP address allocation too (this option strongly recommended)!
Preparing the Network
Initial Assumptions

- The network is not running any BGP at the moment
 - single statically routed connection to upstream ISP
- The network is not running any IGP at all
 - Static default and routes through the network to do “routing”
Preparing the Network
First Step: IGP

- Decide on IGP: OSPF or ISIS 😊
- Assign loopback interfaces and /32 addresses to each router which will run the IGP
 - Loopback is OSPF and BGP router id
 - Used for iBGP and route origination
- Deploy IGP (e.g. OSPF)
 - IGP can be deployed with NO IMPACT on the existing static routing
 - OSPF distance is 110, static distance is 1
 - Smallest distance wins
Preparing the Network
Second Step: iBGP

- Second step is to configure the local network to use iBGP
- iBGP can run on all routers, or a subset of routers, or just on the upstream edge
- \textit{iBGP must run on all routers which are in the transit path between external connections}
Preparing the Network
Second Step: iBGP (Transit Path)

- **iBGP must run on all routers which are in the transit path between external connections**
- Routers C, E and F are not in the transit path
 - Static routes or IGP will suffice
- Router D is in the transit path
 - Will need to be in iBGP mesh, otherwise routing loops will result
Preparing the Network Layers

• Typical SP networks have three layers:
 Core – the backbone, usually the transit path
 Distribution – the middle, PoP aggregation layer
 Aggregation – the edge, the devices connecting customers
Preparing the Network Aggregation Layer

- iBGP is optional
 Many ISPs run iBGP here, either partial routing (more common) or full routing (less common)
 Full routing is not needed unless customers want full table
 Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing
 Communities and peer-groups make this administratively easy
- Many aggregation devices can’t run iBGP
 Static routes from distribution devices for address pools
 IGP for best exit
Preparing the Network Distribution Layer

• Usually runs iBGP
 Partial or full routing (as with aggregation layer)
• But does not have to run iBGP
 IGP is then used to carry customer prefixes (does not scale)
 IGP is used to determine nearest exit
• Networks which plan to grow large should deploy iBGP from day one
 Migration at a later date is extra work
 No extra overhead in deploying iBGP, indeed IGP benefits
Preparing the Network
Core Layer

• Core of network is usually the transit path
• iBGP necessary between core devices
 Full routes or partial routes:
 Transit ISPs carry full routes in core
 Edge ISPs carry partial routes only
• Core layer includes AS border routers
Preparing the Network iBGP Implementation

• Decide on:
 Best iBGP policy (full vs partial route mix)
 iBGP scaling technique (communities, route-reflectors, peer-groups)

• Then deploy iBGP:
 Step 1: Introduce iBGP (making sure that iBGP distance is greater than IGP distance)
 Step 2: Install customer prefixes into iBGP
 Step 3: Make iBGP distance less than IGP
 Check! Does the network still work?
 Step 4: Withdraw customer prefixes from the IGP
 Step 5: Deployment of eBGP follows
Preparing the Network Configuration – Before BGP

interface loopback 0
 ip address 121.10.255.1 255.255.255.255
! interface serial 0/0
 ip address 121.10.0.1 255.255.255.252
! interface serial 0/1
 ip address 121.10.0.5 255.255.255.252
! router ospf 100
 network 121.10.255.1 0.0.0.0 area 0
 passive-interface loopback 0
 redistribute connected subnets ! Point-to-point links
 redistribute static subnets ! Customer networks
!
 ip route 121.10.24.0 255.255.252.0 serial 0/0
 ip route 121.10.28.0 255.255.254.0 serial 0/1

Add loopback configuration if not already there.
Prefering the Network Configuration – Steps 1 & 2

! interface and OSPF configuration unchanged
!

router bgp 100
 redistribute connected subnets route-map point-to-point
 neighbor 121.10.1.2 remote-as 100
 neighbor 121.10.1.2 next-hop-self
 ...
 network 121.10.24.0 mask 255.255.252.0
 network 121.10.28.0 mask 255.255.254.0
 distance bgp 200 200 200

!

ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
!

route-map point-to-point permit 5
 match ip address 1
 set community 100:1

!

access-list 1 permit 121.10.0.0 0.0.255.255

Add BGP and related configuration in red
Preparing the Network Configuration – Steps 3 & 4

! interface configuration unchanged
!
router ospf 100
 network 121.10.255.1 0.0.0.0 area 0
 passive-interface loopback 0
!
router bgp 100
 redistribute connected route-map point-to-point
 neighbor 121.10.1.2 remote-as 100
 neighbor 121.10.1.2 next-hop-self
...
 network 121.10.24.0 mask 255.255.252.0
 network 121.10.28.0 mask 255.255.254.0
 distance bgp 20 20 20 20 ! reduced BGP distance
!
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
!
...etc...

OSPF redistribution has been removed
Preparing the Network Configuration – Step 5

! interface configuration unchanged

router ospf 100
 network 121.10.255.1 0.0.0.0 area 0
 passive-interface loopback 0

router bgp 100
 redistribute connected route-map point-to-point
 neighbor 121.10.1.2 remote-as 100
 neighbor 121.10.1.2 next-hop-self

 network 121.10.24.0 mask 255.255.252.0
 network 121.10.28.0 mask 255.255.254.0
 distance bgp 200 200 200 ! BGP distance restored

ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1

...etc...
Preparing the Network Configuration Summary

- Customer networks are now in iBGP
 iBGP deployed over the backbone
 Full or Partial or Upstream Edge only
- BGP distance is greater than any IGP
- Now ready to deploy eBGP
Basic Multihoming

Let’s learn to walk before we try running…
Basic Multihoming

• No frills multihoming
• Will look at two cases:
 Multihoming with the same ISP
 Multihoming to different ISPs
• Will keep the examples easy
 Understanding easy concepts will make the more complex scenarios easier to comprehend
Basic Multihoming

- This type is most commonplace at the edge of the Internet
 Networks here are usually concerned with inbound traffic flows
 Outbound traffic flows being “nearest exit” is usually sufficient
- Can apply to the leaf ISP as well as Enterprise networks
Two links to the same ISP

Basic – No Redundancy
Two links to the same ISP

• Can use BGP for this to aid loadsharing
 use a private AS (ASN > 64511)

• upstream ISP proxy aggregates
 in other words, announces only your address block to the Internet (as would be done if you had one statically routed connection)
Two links to the same ISP

AS 100

• AS100 proxy aggregates for AS 65534

AS 65534
Two links to the same ISP

- Split /19 and announce as two /20s, one on each link
 - basic inbound loadsharing
- Example has no practical use, but demonstrates the principles
Two links to the same ISP

- **Router A Configuration**

```plaintext
router bgp 65534
  network 121.10.0.0 mask 255.255.240.0
  network 121.10.16.0 mask 255.255.240.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 prefix-list routerC out
  neighbor 122.102.10.2 prefix-list default in

! ip prefix-list default permit 0.0.0.0/0
! ip prefix-list routerC permit 121.10.0.0/20
!
! ip route 121.10.0.0 255.255.240.0 null0
ip route 121.10.16.0 255.255.240.0 null0
```
Two links to the same ISP

- **Router B Configuration**

```plaintext
router bgp 65534
    network 121.10.0.0 mask 255.255.240.0
    network 121.10.16.0 mask 255.255.240.0
    neighbor 122.102.10.6 remote-as 100
    neighbor 122.102.10.6 prefix-list routerD out
    neighbor 122.102.10.6 prefix-list default in

! ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerD permit 121.10.16.0/20
!
ip route 121.10.0.0 255.255.240.0 null0
ip route 121.10.16.0 255.255.240.0 null0
```
Two links to the same ISP

• **Router C Configuration**

 router bgp 100

 neighbor 122.102.10.1 remote-as 65534

 neighbor 122.102.10.1 default-originate

 neighbor 122.102.10.1 prefix-list Customer in

 neighbor 122.102.10.1 prefix-list default out

 !

 ip prefix-list Customer permit 121.10.0.0/20

 ip prefix-list default permit 0.0.0.0/0
Two links to the same ISP

- **Router D Configuration**

  ```
  router bgp 100
  neighbor 122.102.10.5 remote-as 65534
  neighbor 122.102.10.5 default-originate
  neighbor 122.102.10.5 prefix-list Customer in
  neighbor 122.102.10.5 prefix-list default out
  !
  ip prefix-list Customer permit 121.10.16.0/20
  ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP

• Router E is AS100 border router
 removes prefixes in the private AS from external announcements
 implements the proxy aggregation for the customer prefixes
Two links to the same ISP

• **Router E Configuration**

```
router bgp 100
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.17 remote-as 110
  neighbor 122.102.10.17 filter-list 1 out
!
ip route 121.10.0.0 255.255.224.0 null0
!
ip as-path access-list 1 deny ^65534$
ip as-path access-list 1 permit ^$
```

• **Private AS still visible inside AS100**
Two links to the same ISP

- **Big Problem:**

 no backup in case of link failure

- /19 address block not announced

- AS Path filtering “awkward”

 easier to use bgp command

 \texttt{neighbor x.x.x.x remove-private-AS}
Two links to the same ISP

One link primary, the other link backup only
Two links to the same ISP (one as backup only)

- Applies when end-site has bought a large primary WAN link to their upstream a small secondary WAN link as the backup

 For example, primary path might be an E1, backup might be 64kbps
Two links to the same ISP (one as backup only)

- AS100 removes private AS and any customer subprefixes from Internet announcement
Two links to the same ISP (one as backup only)

• Announce /19 aggregate on each link

 primary link:

 Outbound – announce /19 unaltered

 Inbound – receive default route

 backup link:

 Outbound – announce /19 with increased metric

 Inbound – received default, and reduce local preference

• When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity
Two links to the same ISP (one as backup only)

- **Router A Configuration**

  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 description RouterC
  neighbor 122.102.10.2 prefix-list aggregate out
  neighbor 122.102.10.2 prefix-list default in
  
  ip prefix-list aggregate permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP
(one as backup only)

- **Router B Configuration**
  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.6 remote-as 100
  neighbor 122.102.10.6 description RouterD
  neighbor 122.102.10.6 prefix-list aggregate out
  neighbor 122.102.10.6 route-map routerD-out out
  neighbor 122.102.10.6 prefix-list default in
  neighbor 122.102.10.6 route-map routerD-in in
  
  .. next slide
  ```
Two links to the same ISP (one as backup only)

```plaintext
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0

route-map routerD-out permit 10
  match ip address prefix-list aggregate
  set metric 10
route-map routerD-out permit 20

route-map routerD-in permit 10
  set local-preference 90
```
Two links to the same ISP (one as backup only)

• **Router C Configuration (main link)**

  ```
  router bgp 100
  neighbor 122.102.10.1 remote-as 65534
  neighbor 122.102.10.1 default-originate
  neighbor 122.102.10.1 prefix-list Customer in
  neighbor 122.102.10.1 prefix-list default out
  
ip prefix-list Customer permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP (one as backup only)

• Router D Configuration (backup link)

```plaintext
router bgp 100
  neighbor 122.102.10.5 remote-as 65534
  neighbor 122.102.10.5 default-originate
  neighbor 122.102.10.5 prefix-list Customer in
  neighbor 122.102.10.5 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```
Two links to the same ISP (one as backup only)

- **Router E Configuration**

  ```
  router bgp 100
  neighbor 122.102.10.17 remote-as 110
  neighbor 122.102.10.17 remove-private-AS
  neighbor 122.102.10.17 prefix-list Customer out
  
  ip prefix-list Customer permit 121.10.0.0/19
  ```

- **Router E removes the private AS and customer’s subprefixes from external announcements**

- **Private AS still visible inside AS100**
Two links to the same ISP

With Redundancy and Loadsharing
Loadsharing to the same ISP

• More common case

• End sites tend not to buy circuits and leave them idle, only used for backup as in previous example

• This example assumes equal capacity circuits

 Unequal capacity circuits requires more refinement – see later
Loadsharing to the same ISP

- Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement.
Loadsharing to the same ISP (with redundancy)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
 basic inbound loadsharing
 assumes equal circuit capacity and even spread of traffic across address block
- Vary the split until “perfect” loadsharing achieved
- Accept the default from upstream
 basic outbound loadsharing by nearest exit
 okay in first approx as most ISP and end-site traffic is inbound
Loadsharing to the same ISP (with redundancy)

• Router A Configuration

```plaintext
router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.0.0 mask 255.255.240.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 prefix-list routerC out
  neighbor 122.102.10.2 prefix-list default in

  !
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerC permit 121.10.0.0/20
ip prefix-list routerC permit 121.10.0.0/19

  !
ip route 121.10.0.0 255.255.240.0 null0
ip route 121.10.0.0 255.255.224.0 null0
```
Loadsharing to the same ISP (with redundancy)

• **Router B Configuration**

  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.16.0 mask 255.255.240.0
  neighbor 122.102.10.6 remote-as 100
  neighbor 122.102.10.6 prefix-list routerD out
  neighbor 122.102.10.6 prefix-list default in
  
  ip prefix-list default permit 0.0.0.0/0
  ip prefix-list routerC permit 121.10.16.0/20
  ip prefix-list routerC permit 121.10.0.0/19
  
  ip route 121.10.16.0 255.255.240.0 null0
  ip route 121.10.0.0 255.255.224.0 null0
  ```
Loadsharing to the same ISP (with redundancy)

- **Router C Configuration**

  ```
  router bgp 100
  neighbor 122.102.10.1 remote-as 65534
  neighbor 122.102.10.1 default-originate
  neighbor 122.102.10.1 prefix-list Customer in
  neighbor 122.102.10.1 prefix-list default out
  !
  ip prefix-list Customer permit 121.10.0.0/19 le 20
  ip prefix-list default permit 0.0.0.0/0
  ```

- Router C only allows in /19 and /20 prefixes from customer block

- Router D configuration is identical
Loadsharing to the same ISP (with redundancy)

- Default route for outbound traffic?

 Use default-information originate for the IGP and rely on IGP metrics for nearest exit

 e.g. on router A:

  ```
  router ospf 65534
  default-information originate metric 2 metric-type 1
  ```
Loadsharing to the same ISP (with redundancy)

- **Router C Configuration**

 router bgp 100

 neighbor 122.102.10.1 remote-as 65534

 neighbor 122.102.10.1 default-originate

 neighbor 122.102.10.1 prefix-list Customer in

 neighbor 122.102.10.1 prefix-list default out

 ip prefix-list Customer permit 121.10.0.0/19 le 20

 ip prefix-list default permit 0.0.0.0/0

- **Router C only allows in /19 and /20 prefixes from customer block**
Loadsharing to the same ISP (with redundancy)

- **Router D Configuration**

  ```
  router bgp 100
  neighbor 122.102.10.5 remote-as 65534
  neighbor 122.102.10.5 default-originate
  neighbor 122.102.10.5 prefix-list Customer in
  neighbor 122.102.10.5 prefix-list default out
  
  ip prefix-list Customer permit 121.10.0.0/19 le 20
  ip prefix-list default permit 0.0.0.0/0
  ```

- **Router D only allows in /19 and /20 prefixes from customer block**
Loadsharing to the same ISP (with redundancy)

- Router E is AS100 border router
 removes subprefixes in the private AS from external announcements
 removes the private AS from external announcement of the customer /19
Loadsharing to the same ISP (with redundancy)

- **Router E Configuration**

  ```
  router bgp 100
  neighbor 122.102.10.17 remote-as 110
  neighbor 122.102.10.17 remove-private-AS
  neighbor 122.102.10.17 prefix-list Customer out
  
  ip prefix-list Customer permit 121.10.0.0/19
  ```

- **Private AS still visible inside AS100**
Loadsharing to the same ISP (with redundancy)

- Loadsharing configuration is only on customer router
- Upstream ISP has to
 - remove customer subprefixes from external announcements
 - remove private AS from external announcements
- Could also use BGP communities
Two links to the same ISP

Multiple Dualhomed Customers

(RFC2270)
Multiple Dualhomed Customers (RFC2270)

• Unusual for an ISP just to have one dualhomed customer
 Valid/valuable service offering for an ISP with multiple PoPs
 Better for ISP than having customer multihome with another provider!

• Look at scaling the configuration
 ⇒ Simplifying the configuration
 Using templates, peer-groups, etc
 Every customer has the same configuration (basically)
Multiple Dualhomed Customers (RFC2270)

• Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement
Multiple Dualhomomed Customers (RFC2270)

• Customer announcements as per previous example

• Use the *same* private AS for each customer documented in RFC2270 address space is not overlapping each customer hears default only

• Router Aₙ and Bₙ configuration same as Router A and B previously
Multiple Dualhomed Customers (RFC2270)

• **Router A1 Configuration**

  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.0.0 mask 255.255.240.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 prefix-list routerC out
  neighbor 122.102.10.2 prefix-list default in
  
  ip prefix-list default permit 0.0.0.0/0
  ip prefix-list routerC permit 121.10.0.0/20
  ip prefix-list routerC permit 121.10.0.0/19
  !
  ip route 121.10.0.0 255.255.240.0 null0
  ip route 121.10.0.0 255.255.224.0 null0
  ```
Multiple Dualhomed Customers (RFC2270)

- **Router B1 Configuration**

  ```
  router bgp 65534
  
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.16.0 mask 255.255.240.0
  neighbor 122.102.10.6 remote-as 100
  neighbor 122.102.10.6 prefix-list routerD out
  neighbor 122.102.10.6 prefix-list default in
  
  !
  ip prefix-list default permit 0.0.0.0/0
  ip prefix-list routerD permit 121.10.16.0/20
  ip prefix-list routerD permit 121.10.0.0/19
  
  !
  ip route 121.10.0.0 255.255.224.0 null0
  ip route 121.10.16.0 255.255.240.0 null0
  ```
Multiple Dualhomed Customers (RFC2270)

- **Router C Configuration**

  ```
  router bgp 100
  neighbor bgp-customers peer-group
  neighbor bgp-customers remote-as 65534
  neighbor bgp-customers default-originate
  neighbor bgp-customers prefix-list default out
  neighbor 122.102.10.1 peer-group bgp-customers
  neighbor 122.102.10.1 description Customer One
  neighbor 122.102.10.1 prefix-list Customer1 in
  neighbor 122.102.10.9 peer-group bgp-customers
  neighbor 122.102.10.9 description Customer Two
  neighbor 122.102.10.9 prefix-list Customer2 in
  ```
Multiple Dualhomed Customers (RFC2270)

neighbor 122.102.10.17 peer-group bgp-customers
neighbor 122.102.10.17 description Customer Three
neighbor 122.102.10.17 prefix-list Customer3 in

!
ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0

- Router C only allows in /19 and /20 prefixes from customer block
Multiple Dualhomed Customers (RFC2270)

• **Router D Configuration**

```
router bgp 100
neighbor bgp-customers peer-group
neighbor bgp-customers remote-as 65534
neighbor bgp-customers default-originate
neighbor bgp-customers prefix-list default out
neighbor 122.102.10.5 peer-group bgp-customers
neighbor 122.102.10.5 description Customer One
neighbor 122.102.10.5 prefix-list Customer1 in
neighbor 122.102.10.13 peer-group bgp-customers
neighbor 122.102.10.13 description Customer Two
neighbor 122.102.10.13 prefix-list Customer2 in
```
Multiple Dualhomed Customers (RFC2270)

neighbor 122.102.10.21 peer-group bgp-customers
neighbor 122.102.10.21 description Customer Three
neighbor 122.102.10.21 prefix-list Customer3 in
!
ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0

• Router D only allows in /19 and /20 prefixes from customer block
Multiple Dualhomed Customers (RFC2270)

• **Router E Configuration**

 assumes customer address space is not part of upstream’s address block

 router bgp 100

 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 remove-private-AS
 neighbor 122.102.10.17 prefix-list Customers out

 !
 ip prefix-list Customers permit 121.10.0.0/19
 ip prefix-list Customers permit 121.16.64.0/19
 ip prefix-list Customers permit 121.14.192.0/19

• **Private AS still visible inside AS100**
Multiple Dualhomed Customers (RFC2270)

- If customers’ prefixes come from ISP’s address block
 do **NOT** announce them to the Internet
 announce ISP aggregate only

- **Router E configuration:**

  ```
  router bgp 100
  neighbor 122.102.10.17 remote-as 110
  neighbor 122.102.10.17 prefix-list my-aggregate out
  !
  ip prefix-list my-aggregate permit 121.8.0.0/13
  ```
Multihoming Summary

- Use private AS for multihoming to upstream
- Leak subprefixes to upstream only to aid loadsharing
- Upstream Router E configuration is uniform across all scenarios
Basic Multihoming

Multihoming to Different ISPs
Two links to different ISPs

• Use a Public AS
 Or use private AS if agreed with the other ISP
 But some people don’t like the “inconsistent-AS” which results from use of a private-AS

• Address space comes from
 both upstreams or
 Regional Internet Registry

• Configuration concepts very similar
Inconsistent-AS?

- Viewing the prefixes originated by AS65534 in the Internet shows they appear to be originated by both AS210 and AS200

 This is NOT bad
 Nor is it illegal

- IOS command is

 `show ip bgp inconsistent-as`
Two links to different ISPs

Basic – No Redundancy
Two links to different ISPs (no redundancy)

- Example for PI space
 - ISP network, or large enterprise site
- Split /19 and announce as two /20s, one on each link
 - basic inbound loadsharing
Two links to different ISPs
(no redundancy)

- AS 100
- AS 120
- AS 130

Announce first /20 block

Announce second /20 block
Two links to different ISPs (no redundancy)

• Router A Configuration

```
router bgp 130

network 121.10.0.0 mask 255.255.240.0
neighbor 122.102.10.1 remote-as 100
neighbor 122.102.10.1 prefix-list routerC out
neighbor 122.102.10.1 prefix-list default in
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerC permit 121.10.0.0/20
```
Two links to different ISPs (no redundancy)

- **Router B Configuration**

  ```
  router bgp 130
  network 121.10.16.0 mask 255.255.240.0
  neighbor 120.1.5.1 remote-as 120
  neighbor 120.1.5.1 prefix-list routerD out
  neighbor 120.1.5.1 prefix-list default in
  
ip prefix-list default permit 0.0.0.0/0
  ip prefix-list routerD permit 121.10.16.0/20
  ```
Two links to different ISPs (no redundancy)

• Router C Configuration

  ```
  router bgp 100
  neighbor 121.10.1.1 remote-as 130
  neighbor 121.10.1.1 default-originate
  neighbor 121.10.1.1 prefix-list AS130cust in
  neighbor 121.10.1.1 prefix-list default-out out
  ```

 • Router C only announces default to AS 130
 • Router C only accepts AS130’s prefix block
Two links to different ISPs (no redundancy)

- **Router D Configuration**

  ```
  router bgp 120
  neighbor 120.1.5.1 remote-as 130
  neighbor 120.1.5.1 default-originate
  neighbor 120.1.5.1 prefix-list AS130cust in
  neighbor 120.1.5.1 prefix-list default-out out
  ```

- Router D only announces default to AS 130
- Router D only accepts AS130’s prefix block
Two links to different ISPs (no redundancy)

- **Big Problem:**
 - no backup in case of link failure
- /19 address block not announced
Two links to different ISPs

One link primary, the other link backup only
Two links to different ISPs (one as backup only)

- Announce /19 aggregate on each link
 - primary link makes standard announcement
 - backup link lengthens the AS PATH by using AS PATH prepend
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity
Two links to different ISPs (one as backup only)

Internet

AS 100

announce /19 block

AS 130

AS 120

announce /19 block with longer AS PATH
Two links to different ISPs (one as backup only)

- **Router A Configuration**

  ```
  router bgp 130
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.1 remote-as 100
  neighbor 122.102.10.1 prefix-list aggregate out
  neighbor 122.102.10.1 prefix-list default in
  
  ip prefix-list aggregate permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  ```
Two links to different ISPs (one as backup only)

- **Router B Configuration**

  ```
  router bgp 130
  network 121.10.0.0 mask 255.255.224.0
  neighbor 120.1.5.1 remote-as 120
  neighbor 120.1.5.1 prefix-list aggregate out
  neighbor 120.1.5.1 route-map routerD-out out
  neighbor 120.1.5.1 prefix-list default in
  neighbor 120.1.5.1 route-map routerD-in in
  
  ip prefix-list aggregate permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  
  route-map routerD-out permit 10
  set as-path prepend 130 130 130
  
  route-map routerD-in permit 10
  set local-preference 80
  ```
Two links to different ISPs (one as backup only)

• Not a common situation as most sites tend to prefer using whatever capacity they have

• But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction
Two links to different ISPs

With Redundancy
Two links to different ISPs (with redundancy)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link

 basic inbound loadsharing

- When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity
Two links to different ISPs (with redundancy)

Announce first /20 and /19 block

Announce second /20 and /19 block
Two links to different ISPs (with redundancy)

- **Router A Configuration**

  ```
  router bgp 130

  network 121.10.0.0 mask 255.255.224.0
  network 121.10.0.0 mask 255.255.240.0
  neighbor 122.102.10.1 remote-as 100
  neighbor 122.102.10.1 prefix-list firstblock out
  neighbor 122.102.10.1 prefix-list default in

  ip prefix-list default permit 0.0.0.0/0

  ip prefix-list firstblock permit 121.10.0.0/20
  ip prefix-list firstblock permit 121.10.0.0/19
  ```
Two links to different ISPs (with redundancy)

- **Router B Configuration**

  ```
  router bgp 130
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.16.0 mask 255.255.240.0
  neighbor 120.1.5.1 remote-as 120
  neighbor 120.1.5.1 prefix-list secondblock out
  neighbor 120.1.5.1 prefix-list default in
  
  ip prefix-list default permit 0.0.0.0/0
  
  ip prefix-list secondblock permit 121.10.16.0/20
  ip prefix-list secondblock permit 121.10.0.0/19
  ```
Two links to different ISPs (with loadsharing)

- Loadsharing in this case is very basic
- But shows the first steps in designing a load sharing solution

 Start with a simple concept

 And build on it...!
Two links to different ISPs

More Controlled Loadsharing
Loadsharing with different ISPs

- Announce /19 aggregate on each link
 - On first link, announce /19 as normal
 - On second link, announce /19 with longer AS PATH, and announce one /20 subprefix
 - controls loadsharing between upstreams and the Internet
- Vary the subprefix size and AS PATH length until “perfect” loadsharing achieved
- Still require redundancy!
Loadsharing with different ISPs

Internet

AS 100

AS 120

Announce /19 block

Announce /20 subprefix, and /19 block with longer AS path

AS 130
Loadsharing with different ISPs

• **Router A Configuration**

  ```
  router bgp 130
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.1 remote-as 100
  neighbor 122.102.10.1 prefix-list default in
  neighbor 122.102.10.1 prefix-list aggregate out
  !
  ip prefix-list aggregate permit 121.10.0.0/19
  ```
Loadsharing with different ISPs

• **Router B Configuration**

```plaintext
router bgp 130
    network 121.10.0.0 mask 255.255.224.0
    network 121.10.16.0 mask 255.255.240.0
    neighbor 120.1.5.1 remote-as 120
    neighbor 120.1.5.1 prefix-list default in
    neighbor 120.1.5.1 prefix-list subblocks out
    neighbor 120.1.5.1 route-map routerD out
!
route-map routerD permit 10
    match ip address prefix-list aggregate
    set as-path prepend 130 130
route-map routerD permit 20
!
ip prefix-list subblocks permit 121.10.0.0/19 le 20
ip prefix-list aggregate permit 121.10.0.0/19
```
Loadsharing with different ISPs

• This example is more commonplace

• Shows how ISPs and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs

• Notice that the /19 aggregate block is ALWAYS announced
BGP Multihoming

ISP/IXP Workshops