SANOG 2005 Exim Practical

Objectives

Part 1 is building Exim from source, and installing it.
* Download Exim source and documentation
» Unpack the source and documentation
e Build Exim from the generic distribution
e Instal Exim
* Replace Sendmail with Exim

Part 2 isrunning basic tests. You don't need to modify the Exim configuration to do this.
e Test a standard installation and default configuration
¢ Inspect and manage the mail queue
e Check relay control

e Process log data

Part 3 involves some simple modification of the runtime configuration.
e Modify the runtime configuration to send undeliverable mail to postmaster
e Add some simple virtual domains

Part 4 sets up your host as a mail relay
* Allow relaying from another host
« Allow relaying to another domain
e Configure SMTP authentication

Part 5 more advanced things to try for those who have time.
e Demonstrate retry mechanisms
e Add a system filter
» Configure and test address rewriting
e Interface Exim to SpamAssassin
* Interface Exim to ClamAV

This sign is used in the text to mark an action that you need to take if you want to do the things
that are suggested in this practical.

Common mistakes

In past workshops, these are the most common mistakes that have been made:

* Doing everything as root. You only need to be root to install Exim and change its configur-
ation. Otherwise, you should do everything (including building Exim) under your normal

[1]

login. In the sample commands, the command prompt is shown as # for commands that must
be run as root, and $ otherwise.

In particular, running email tests as root is a bad idea, because root has privileges. You want
to test that Exim is working when an ordinary, unprivileged user cals it.

You are going to be wanting to switch backwards and forwards between root and your own
login quite a lot. A convenient way of doing this is to run X windows, and set up two xterm
windows side by side, one under your login and the other as root.

Forgetting the dot that terminates a message. When you type a message directly into Exim, it
needs a line containing just a dot to terminate it. Until you type that line, all input is taken as
part of the message.

Setting PATH incorrectly. Whenever you change your PATH setting, be sure to check what
you have typed carefully before pressing RETURN. If you mess up with PATH, you'll find
that lots of commands *“disappear”.

Adding dots to email domains. You should now have got used to inserting trailing dots in fully
qualified domains in DNS zones. Unfortunately, in email configurations, trailing dots are not
used and will cause problems if you use them.

[2]

1. Installing Exim

We are going to install Exim from the generic source distribution. This way of doing it alows you
to make your own choices at build time. It also shows you that installing software from source can

be quite easy.

You do not need to be root to build Exim, and it is best practice if you are not. However, you do
need to be root to install Exim.

Reminder: In the sample commands below, the command prompt is shown as # for commands that
must be run as root, and $ otherwise.

1.1 Preliminary preparation

If Sendmail is running, kill it off. Use this command:
/etc/rc.d/ sendmail stop

You must also stop Sendmail from restarting at the next boot. Do this by editing the file /etc/rc.conf
and adding this line at the end:

sendnai | _enabl e=" NONE"
Use vi to create the file /etc/periodic.conf file and add these lines:

dai l y_status_incl ude_subm t _mail g="NO'
dai |l y_cl ean_host st at _enabl e="NO'

This disables the daily housekeeping commands that Sendmail uses.

Note: On other operating systems, the way you kill off sendmail and stop it from restarting
may be different.

You should previously have created a user and a group called exim. These will be used for running
Exim when it does not need to be root. If you have not done this yet, you must do it before trying
to build Exim.

You should also have arranged for your persona (non-root) account to be in the exim group so that
you can be an administrator for Exim. Check by running

$ groups
If the exim group is not listed, edit /etc/group (as root). Find the line that contains
exi m *: 90:

and add your login name to the end of it. You will then need to login again for this change to take
effect.

Ensure that the /var/mail directory has the ‘sticky’ bit set on it. If you don't understand this, don’'t
worry, just do it:

chnod 1777 /var/ mai |
This is so that the default Exim configuration will work without having to be changed.

[3]

[]

1.2 Download the source and documentation

As root, make a directory in which to build Exim, say /usr/exim, and give yourself access to it:

nkdir /usr/exim
chown yourname: yourname / usr/exim

You can now fetch and build Exim from your own account (not root).

Fetch the source of Exim and the HTML documentation from the workshop ftp site:

$ cd /usr/exim
$ ftp ftp.ws.sanog.org

Log in as anonymous.

ftp> cd / pub/software

ftp> get exim4.52.tar.gz

ftp> get eximhtm -4.50.tar. gz
ftp> bye

Unzip and untar the source and the HTML documentation:

$ cd /usr/exim

$ gunzip exim4.52. tar.gz
$tar -xf exim4.52. tar

$ gunzip eximhtm -4.50.tar. gz
$tar -xf eximhtm -4.50.tar

1.3 Check the documentation

Before moving on, make sure you can access the Exim documentation, so that you can look things

up if you have problems. If you have a web browser running, point it at:
file:///usr/eximeximhtm -4.50/doc/htm/index. htm

The FAQ has a useful keyword-in-context index to help you find your way about. There should
also be a file called /usr/exim/exim-4.52/doc/spec.txt. It contains a copy of the manua in ASCII
format which can be searched with a text editor.

1.4 Building Exim

Now we can get ready to build Exim. You have to set up two configuration files. Go into the
toplevel source directory:

$ cd /usr/eximexim4a4.52

Copy the file src/EDITME to Local/Makefile and exim_monitor/EDITME to Local/eximon.conf. You
then have to edit Local/Makefile, following the instructions inside it:

$ cp src/EDI TME Local / Makefile
$ cp exi mnoni tor/EDI TME Local / exi non. conf
$ vi Local / Makefile

There are lots of instructions inside the file, but you do not have to make many changes. You can
leave almost all of the settings at the defaults, but you will need to set EXI M_USER to the user for
running Exim. You also need to request ‘maildir’ support and content scanning support for use

[4]

later in the workshop. Find the lines that contain EXI M _USER, SUPPORT_MAI LDI R,
W TH_CONTENT_SCAN, and AUTH_PLAI NTEXT and change them to be like this:

EXI M_USER=exi m
SUPPORT_MAI LDI R=yes
W TH_CONTENT _SCAN=yes
AUTH_PLAI NTEXT=yes

|:| (Do not do this at the workshop.) When you build Exim on your own hosts back home, you

may want to change Bl N_DI RECTORY and CONFI GURE_FI LE from their default values

of /usr/fexiim/bin and /usr/exim/configure. For example, these settings match what the
FreeBSD port uses:

Bl N_DI RECTORY=/ usr/ | ocal / shin
CONFI GURE_FI LE=/ usr/ | ocal / et c/ exi nf confi gure

However, for this exercise, we assume that you didn’'t change the default values.

You do not need to edit Local/eximon.conf because the default settings will be OK.

Now you can run make:
$ nake

You should see a lot of output while Exim builds, ending with the line:
>>> exi m binary built

When you see that line, you have successfully built Exim. Easy, wasn't it?

1.5 Installing Exim

You need to be root to install Exim:

cd /usr/eximexim4.52
make install

You should end up with the Exim binaries in /usr/exim/bin/ and a default configuration file in
Jusr/exim/configure.

Test that Exim has been installed by running:
$ /usr/exi n bin/exi m-bV

which should tell you Exim’s version number and some other information about which features are
included.

1.6 Replace Sendmail with Exim

All the MUASs call /usr/shin/sendmail to pass messages to the MTA. We want them to call Exim
instead of Sendmail.

(3]

|:| On FreeBSD, there is a file called /etc/mail/mailer.conf that selects the MTA. To change the MTA,
you must edit this file (as root):

vi /etc/mail/miler.conf
Comment the existing lines, and insert these new lines:

sendnai | fusr/exinbin/exim
send- mai | fusr/exinbin/exim

mai | g [usr/eximbin/exim-bp
newal i ases fusr/bin/true

[Now try that basic test again, but this time using the standard path name:
$ /usr/sbin/sendmail -bV

You should get the same output as before, which shows that Exim is now being used instead of
Sendmail.

If you are doing a real installation on a live system, you might want to work on the configuration
and do lots of testing before removing Sendmail and replacing it with Exim.

6]

2. Testing Exim

2.1 Test the standard installation and configuration

Make sure you substitute a real local user name for localuser in what follows. Remember, you
should not be root when running these tests.

To save typing, adjust your PATH variable so that the command exim can be used to run the Exim
binary. Take great care when you do this, because messing up your PATH will make many
commands “vanish”’. The way to adjust PATH depends on which shell is running. If you are using a
Bourne-compatible shell such as bash or ksh, type this command exactly, taking care with the colon
and dollar in the middle:

$ export PATH=/ usr/ exi m bi n: $PATH
If you are using csh or tcsh, use this command, noting that there is a space (not an =) after PATH:
$ setenv PATH /usr/ exi m bi n: $PATH

First, check what Exim will do with a local address:
$ exi m - bt localuser
This tests the delivery routing for alocal account. See what output you get.

Try with a non-existent local user and see what happens:
$ exi m-bt junkjunkj unk

Try something that is in /etc/aliases:
$ exi m-bt postnmaster

Exim will not normally deliver mail to a root mailbox (for security reasons) so what people usualy
do is to make root an alias for the sysadmin. In FreeBSD, all the default aliases point to root.
Therefore, you need to add a new alias to /etc/aliases. Add this line (as root):

root: yourname
Now try this again:
$ exi m-bt postnmaster

Now we are going to try a real local delivery. You can pass a message directly to Exim without
using an MUA:

$ exim-v -odf localuser
This is a test nessage.

Note: the message is terminated by a line that just contains a dot. Be sure to type it! (Alternatively,
you can send “end of file" by pressing CTRL-D.)

The - v option turns on user verification output, which shows you copies of Exim’s log lines.

[7]

The - odf option requests ‘foreground’ delivery, which means that the exim command won'’t return
until the delivery is complete. (This avoids your shell prompt getting mixed up with Exim's
output.)

Check what is in Exim's logs:

$ cat /var/spool /exi m | og/ mainl og
$ cat /var/spool /exi m | og/ panicl og

If you get a permission denied error, it is probably because you have not put yourself in the exim
group, or not logged in again after editing /etc/group.

If the delivery succeeded, you should see two lines in the main log, one containing <= for the
message arriving, and one containing => for the delivery.

The panic log should normally be empty, and if nothing has ever been written to it, it will not even
exist, so you may get a No such file or directory error. Tip: On a live system it is helpful to set up
acron job that mails you awarning if it ever finds a non-empty panic log.

Now check the contents of the local user’s mailbox:

$1s -1 /var/mail/ localuser
$ cat /var/mail /localuser

If the delivery didn't succeed, you need to find out why. If the information in the log doesn’t help,
you can try the delivery again, with debugging turned on:

$ exim-d -odf localuser
<there will be output from Exim here>
This is another test nessage.

The - d option turns on debugging, which gives a lot more information than - v. You need to be an
Exim administrator to use - d. If you get a Permission denied error, check that you are a member
of the Exim group.

If you are logged on as localuser, you can use the mail command to read the mail in the usua way.
You could aso try sending a message from the mail command.

The next thing is to test whether Exim can send to a remote host. The speed of this may vary,
depending on the state of the network connection. In what follows, replace user @remote.host with
your home email address.

First, check that Exim can route to the address:

$ exi m - bt user@emote.host

Now send a message to the remote address:

$ exim-v -odf user@emote.host
This is a test nessage.

(8]

This time, the - v option causes Exim to display the SMTP dialogue as well as the log lines. If you
can, check that the message arrived safely. If there are problems, see if you can figure out what
went wrong and why.

You won't be able to receive messages from a remote host until you start the Exim daemon:
$ /usr/exin bin/exim-bd -g20m

The - bd option causes the daemon to listen for incoming SMTP calls, and the - g20m option
causes it to start a queue runner process every 20 minutes.

We also want the daemon to start automatically on a reboot. The /etc/rc.local file is a script that is
run at boot time. Add this line (the same as the command you have just run) to the file /etc/rc.local:

[usr/eximbin/exim-bd -q20m
The file /etc/rc.local may not exist. If it does not exist, you should create it.
Next time you reboot, check that Exim has started.

Use telnet to check that the daemon is accepting SMTP calls:
$ tel net |ocal host 25
You should see an Exim greeting message. Use QUIT to exit.

Now check that a remote host can send a message to your host, and see how Exim logs what
happens. If that succeeds, you have a working basic installation correctly installed.

Try sending to an invalid address from a remote host, and see what error message you get, and how
Exim logs this case. Look in both mainlog and rejectlog.

2.2 Starting the Exim Monitor

You need to have an X-windows session running before you start the monitor, and you need to
have logged in with your own id, not as root. If you try to start the monitor as root you may have
permission problems accessing the display.

Start the monitor:
$ /usr/ exi m bi n/ exi non

The upper window shows a ‘tail’ of the main log; the lower window shows the messages that are
waiting in the queue. Expect both to be empty to start with. Send a few messages and watch what
the monitor displays.

The lower window is updated automatically only every 5 minutes, because it is expensive to scan a
large queue. The “Update”’ button can be used to force an update.

The “Size” button in the upper window reduces the whole monitor window to show just the queue
length stripchart, which is convenient for keeping in a corner of your screen.

[9]

2.3 Queue management tests

There are several command line options (and equivalent menu items in the monitor) for doing
things to messages.

To put a message on the queue without its being delivered, run

$ exi m-odq addressl address2 . . .
Test nessage.

The message stays on the queue until a queue runner process notices it.

List the messages on the queue:
$ exim-bp

Do amanual queue run, with minimal verification output:
$exim-v -q

(Without - v you won't see any output at all on the terminal, but there will be entries in the log.)

2.4 Checking relay control

To demonstrate that Exim will relay by default via the loopback interface, try the following
sequence of SMTP commands. Wait for Exim to respond to each command before typing the next
one. Substitute the number of your host for nn:

$telnet 127.0.0.1 25

ehl o | ocal host

mai | from <localuser@cnn. ws. sanog. or g>
rcpt to: <localuser@cnn. ws. sanog. or g>
rcpt to: <user@ome.remote.domain>

You should get an OK response to al the SMTP commands. Type ‘quit’ to end the SMTP session
without actually sending a message.

Now try the same thing, but use your host’s |P address instead of 127.0.0.1.

$ tel net xxxxxx.xx 25

ehl o | ocal host

mai | from <localuser@cnn. ws. sanog. or g>
rcpt to: <localuser@cnn. ws. sanog. or g>
rcpt to: <user@ome.remote.domain>

In this case, you should get the error message
550 relay not permitted

for the second RCPT command, which is the one that is trying to relay. The first RCPT command
should be accepted, because it specifies a local delivery. You could also try telnetting from an
external host and running the same check.

[10]

2.5 Processing log data

Run exigrep to extract al information about a certain message, or a certain user’'s messages, or
messages for a certain domain. For example:

$ exi grep localuser /var/ spool / exi m | og/ mai nl og

That extracts al the log information for al messages that have any log line containing ‘localuser’.
It's a Perl pattern match, so you can use Perl regular expressions.

To extract simple statistics from a log, run
$ exinstats /var/spool/eximnmlog/ mainlog | nore

There are options for selecting which bits you don’t want. Details are in the manual. If you have
time, experiment with the options for outputting the statistics as HTML.

(11]

3. Changing the configuration

To change Exim'’s runtime configuration, you must edit /usr/exim/configure and then HUP the Exim
daemon (as root). The daemon stores its process id (pid) in a file, in order to make this easy. You
can find out the daemon’s process id by running:

$ cat /var/spool / exi m exi m daenon. pi d

You can use the contents of this file as part of a command to restart the Exim daemon. If you are
using the bash shell, you can use this command:

kill -HUP $(cat /var/spool/exi m exi mdaenon. pid)

The shell first runs the command inside $(. ..), and then uses its output as part of the main
command line.

|:| If you are using the C-shell (csh) rather than bash, you cannot use the $(. . .) construc-
tion. Instead, you must put the nested command inside “backticks’ (grave accent
characters).

You can confirm that the daemon has restarted by checking the main Exim log.

You are going to be restarting the Exim daemon a lot, so make yourself a script to save typing. Use
vi to create afile called /usr/local/bin/hupexim, containing these lines;

#! [usr/ 1 ocal / bin/ bash
kill -HUP $(cat /var/spool/exim exi mdaenon. pid)

Note that the # character in the first line is part of the file (it's not a prompt). Now make the new
file into an executable script:

chmod a+x /usr/ | ocal /bin/ hupexi m

|:| If you are using the C-shell (csh) rather than bash, after creating /usr/local/bin/hupexim you
must run this command:

rehash

This causes the internal hash table of the contents of the directories in the PATH variable to
be recomputed. This is not necessary if you are using bash.

Once you have created /usr/local/bin/hupexim you can restart Exim just by running:
hupexi m

The following sections contain some suggestions for configuration modifications that you can try,
just to get a feel for how the configuration file works. You do not have to stick rigidly to these
examples; use different domain names or user names if you want to.

3.1 Adding more local domains

As root, edit the configuration file (/usr/exim/configure), and change the local_domains setting so
that it looks like this:

domai nlist local _domains = @: testnn sanog.org

where nn is the number of your host. Remember to HUP the daemon afterwards. Now you have a
new local domain. Try sending it some mail:

[12]

$ mai | yourname@ est nn. sanog. org
Check that it arrives in your mailbox.

Note: The domains that we are adding now can only be used from your own host, because
there are no DNS records for them. When you are adding domains to a production host, you
must of course also add MX records for them.

If you want to add a lot of domains, or if you want to keep changing them, it is easier to keep the
list of domains in a file instead of in the Exim configuration. (You can also keep them in severa
different kinds of database, such as LDAP or MySQL, but we don’t cover that in this workshop.)
We are now going to add some domains like this, and then make them into virtual domains.

Asroot, use vi to create a file called /usr/exim/vdomains that contains a list of domains (as many as
you like):

vdoni. sanog. org
vdon?. sanog. org

As root, edit /usr/exim/configure to change the local domains setting:

domainlist |ocal _domains = @: testnn sanog.org : \
| search; /usr/exi m vdonai ns

Note: There is no space following the semicolon. This change makes all the new domains into local
domains.

Now add a new router to the configuration to handle these domains as virtual domains. Put this
router first, before al the other routers, immediately after the line “begin routers’:

vi rtual _donai ns:
driver = redirect

domai ns = | search;/usr/exi mvdonai ns
data = ${| ookup{$l ocal _part}lsearch{/usr/exinialiases-$donain}}
no_nore

There must be no space after the semicolon in the “domains’ line. (Remember to HUP the
daemon.)

Create an dlias file for the first virtual domain — as root, use vi to make the file /usr/exim/aliases-
vdoml.sanog.org containing these lines:

philip: phl0@am ac. uk
your name: your email address

The local parts philip and yourname should now be valid for the first virtual domain.

Test that Exim recognizes the virtual addresses (not as root):
$ exim-bt philip@doml. sanog. org
Please don't actually send test mail to that address — | get too much junk already!

[13]

[Now create a different alias file for the second virtual domain, /usr/exim/aliases-vdom2.sanog.org.
This time, alias philip to somebody else’s address, and check (with -bt) that Exim treats that
address differently.

Note: It is always important to test that incorrect addresses are handled the way you want. So you
need to run this test:

$ exi m-bt unknown@doml. sanog. org

3.2 Catching undeliverable mail

[] Add aredirect router that sends all undeliverable mail in your domain to the postmaster. Where in
the list of routers should this go? See if you can work out how to do this on your own without
looking at the answer below. Do you think that having a router like this is a good idea on a busy
host?

Here is a sample router that does this job:

unknown_t o_post master:
driver = redirect
data = post nmaster

It should be placed last, after all the other routers. Test it by sending mail to an unknown user.

[14]

4. Relaying from another host

In section 2.4 above, there is test to demonstrate that relaying is blocked if you connect to your
host’s IP address.

[we are now going to remove this block by changing a line in the configuration to let all the
classroom hosts relay through your host. Change this line:

host | i st relay fromhosts = 127.0.0.1
to

127.0.0.1 : xXxxxxxxx/mm

where xx.xx.xx.xx/mm is the classroom network. (Don't forget to HUP the daemon.) Then try the
telnet test from section 2.4 again. This time it should accept the request to relay. Ask one of the
other students in the classroom to try relaying through your host — it should work. If you can,
telnet from a host outside the classroom network, and confirm that relaying is still blocked.

host | i st relay_from hosts

4.1 Allowing relaying to specific domains

The default configuration contains the line
domai nlist relay_to_domains =

This defines domains to which your host will relay, wherever the message comes from. As you can
see, the default list is empty, so no domains match.

[] Add some domains to this line. For example, add the domain of your home email. In my case, this
would be:

domai nlist relay_to_domains = cam ac. uk

Now we need to test that Exim will indeed relay to those domains (but not to others) from a host
that does not match relay_from_hosts. Exim has a testing facility that lets you simulate an SMTP
call from aremote host. Run it like this:

$ exim-bh 192.168.1.1

You will see some debugging output, and then an SMTP greeting line. Now type SMTP commands,
waiting for a response between each one:

ehl o testhost

mai | from <localuser@cnn. ws. sanog. or g>
rcpt to: <user@our.nome.domain>

rcpt to: <user@ome.other.domain>

You will see the tests that Exim is making as it runs the ACL after each RCPT command. Check
that it allows relaying to the right domains, and not to any others. End the SMTP session with
QUIT.

4.2 Configuring SMTP authentication

This is a very simple exercise that uses a fixed user name and a fixed password, and an
unencrypted authentication mechanism. Do not use anything as simple as this in production!

|:| Edit the Exim configuration, and find the line, amost at the end, that contains:
begi n aut henticators

[15]

Insert the following after this line:

si npl e_unsecur e:
driver = plaintext
public_name = LOG N
server_pronmpts = User Nane : Password
server_condition =\
${if and {{eq{$1}{rel aynane}}{eq{$2}{rel aysecret}}}}
server _set id = $1

(Remember to HUP the daemon.) This authenticator recognizes only one username (“relayname”)
and one password (“relaysecret™).

Now try the previous test again:
$ exim-bh 192.168.1.1

This time, however, before trying to send a message, you are going to authenticate yourself. These
are the commands that you type, waiting for a response before each one:

ehl o t est host

The response to the EHLO command should include “AUTH LOGIN”, indicating that LOGIN
authentication is available.

auth | ogin

You should get a positive response, which is a prompt for the user name. However, al data in
SMTP authentication is base64 encoded so that any byte value can be included. So instead of “User
name’, what you will see is“VXNIciBOYW1I”. You must now send “relayname”, base64 encoded,
SO type this:

cnmvsYX uYWLI

(Take care with the “I” (ell) and “1” (one) characters in that string. The second-last character is
“one’; the other two are “ell”.) Exim will now prompt for the password with “UGFzc3dvemQ="
(the base64 encoded form of “Password”), and you must respond with:

cmVsYXl zZWNy ZXQ=

If the authentication is successful, you will get a positive response at that point. Now you can test
to see whether relaying to an arbitrary domain is allowed:

mai | from <localuser@cnn. ws. sanog. or g>
rcpt to: <user@ome.other.domain>

If authentication succeeded, Exim should allow the recipient for relaying. End the SMTP session
with QUIT.

If you have time, you can try the same test from an external host, and actually send a real message
for relaying.

[16]

5. More advanced configuration

These are ideas for things to do for those who have time. Don’'t worry if you do not have time to
do this part in the workshop.

5.1 Demonstrate retry mechanisms

The easiest way to demonstrate what happens when Exim cannot deliver a message is to force
connections to remote hosts to fail.

Edit the configuration, and change the remote_smtp transport to be like this:

renot e_snt p:
driver = sntp
port = 3456

(Remember to HUP the daemon.) This makes Exim try port 3456 instead of the SMTP port (25)
when delivering, causing the remote host to refuse the connection (assuming you've chosen an
unused port!)

Send a message to a remote address and see what happens.

Start a queue run
$exim-q

and see what happens and what gets logged. Have a look at the message's own msglog file, which
you can do from the monitor or by using the - M/l option. For example:

$ exim-MI 19EdUm 00016A-1A
(That is an example message ID; you must use the real one for the message that is on your queue.)

Use exinext to see when Exim is next scheduled to deliver to the host that failed:

$ exi next remote.domain

Remember to remove the setting of port when you have finished playing with retries (and HUP
the daemon).

5.2 Add a system filter

Use vi to create a test system filter file in /usr/eximy/system filter, containing these lines:

Eximfilter
if $h_subject: is "spam' then save /dev/null endif

[17]

Arrange for Exim to use the system filter by adding these lines to the configuration (somewhere
near the beginning, before the first “begin” line):

systemfilter = /usr/eximsystemfilter
systemfilter_file_transport = address file

Now send yourself a message with the subject ‘spam’ and see what happens.

5.3 Configure some address rewriting

Find the rewriting section of the configuration (the part that starts with “begin rewrite”). Then add
this line:

ot her name@t her domai n. com post mast er @our . donmai n

Now send a message to othername@otherdomain.com and see what happens.

You can test rewriting rules with the - br w command line option:
$ exi m - brw ot her name@t her donai n. com

5.4 Interface Exim to SpamAssassin

SpamAssassin is a content-based filtering system. It is written in Perl, and is very CPU-intensive.
SpamAssassin can perform a number of network-based lookup checks that can take a long time to
complete. It may therefore not be suitable for high-volume mail systems. The configuration is
complex, though a basic installation using the ports system is straightforward.

Install SpamAssassin:

cd /usr/ports/ mail/p5-Mil-SpamAssassi n
make

make install

make cl ean

In the directory /usr/ | ocal / share/ doc/ p5- Mai | - SpamAssassi n, the files | NSTALL
and USAGE give more detailed information.

Set up the SpamAssassin configuration to disable the most expensive network-based tests.

cd /usr/local/etc/ mail/spanassassin
cp local.cf.sanple |ocal.cf
vi local.cf

Add the following lines:

use dcc O
use_pyzor O

use razor2 O

ski p_rbl _checks 1
use_bayes 0

[18]

Before starting the SpamAssassin daemon, you must edit /etc/rc.conf to enable it. Add the follow-
ing line to /etc/rc.conf:

spand_enabl e=" YES"
This aso ensures that the daemon will automatically be started when the system is rebooted.

Now you can start the SpamAssassin daemon, which is called spamd:
sh /usr/local/etc/rc.d/spand. sh start

Check that it is running:
$ ps -ax | grep spand
Next time you reboot, check that spamd has started automatically.

You can test the spamd daemon manually using spamc, a client that sends mail to spamd for
analysis.

$ spant -R
subj ect: penis enl argenent

Great new pills availablel!!ll!
Ctrl-D

The output should look something like this:

-2.0/5.0

Spam det ection software, running on the system "XXxX.XXX.XX. XX",
has identified this incomng email as possible spam The

ori gi nal nmessage has been attached to this so you can view it
(if it isn't spam or label simlar future email. |If you have
any questions, see the adnministrator of that systemfor details.

Content preview. Geat new pills available!l!!!!l [...]
Content anal ysis details: (-2.0 points, 5.0 required)

pts rul e name description
0.0 M SSI NG DATE M ssing Date: header
-2.8 ALL_TRUSTED Did not pass through any untrusted hosts
0. 8 BODY_ENHANCEMENT2 BODY: Information on getting |arger body
parts

Despite its content, this message has been strongly tagged as ‘not spam’ because it has not been
through any ‘untrusted’ hosts. You may not see exactly this output: it depends on the SpamAssassin
release and the default SpamAssassin configuration that has been installed.

We are now going to change the Exim configuration so that every message is passed to
SpamAssassin. At first, we won't block any messages. Instead, we will put the spam score and
other SpamAssassin output into new headers that are added to the message.

Edit /usr/exim/configure and find the line that contains:

[19]

acl _smp_rcpt = acl _check_rcpt

|:| Add these new lines:

acl _sntp_data
acl _not _sntp

acl _check_dat a
acl _check_dat a

The first line asks Exim to run an ACL check when a message's data has been received in an
SMTP transaction. The second line asks for the same ACL to be run on non-SMTP messages. This
ensures that all incoming messages are scanned. We must now define the ACL.

[] Find the configuration line that contains:

begi n acl

(] Insert the following lines immediately after that line:

acl _check_dat a:

war n spam = nobody
nessage = X-is-spam over spamthreshold
war n nmessage = X- Spam score: $spam score\n\
X- Spam score_int: $spam score_int\n\
X- Spam bar: $spam bar\ n\
X- Spam report: $spamreport
accept

The warn verb in an ACL doesn’t accept or reject, but if its conditions are true, it can add headers
to the message. The first warn passes the message to SpamAssassin, and if the spam score is over
the threshold, an X-i s-spam header is added. The second warn adds some more headers
containing information from SpamAssassin. These are always added, unconditionally.

[] Now send yourself a spammy message. This example uses the local SMTP interface:

$ exim -bs

mai | from <>

rcpt to: <yourname@ourhostname>
dat a

nmessage-i d: abcd

subj ect: BUY VI AGRA HERE!!!

<ht m ><p>Dear Fri end</p>
<p>VI AGRA $10. 99</ p>
<p>Rl SK FREE</ P></ HTM.>
dui t
Take alook at the headers of the message that you receive.

[] Change the first warn to deny, and try the test again. If the spam score is at least 5, the message
should be rejected.

[20]

5.5 Interface Exim to ClamAV

ClamAV is free virus-scanning software. You can interface Exim to it in much the same way as for
SpamAssassin. The documentation is online at http://clamav.sourceforge.net/doc/. Installing
ClamAV is very similar to the way you installed SpamAssassin.

Install ClamAV from the ports tree:

cd /usr/ports/security/clamv
make

At this point, a dialog box pops up; use TAB to move to ‘OK’, then hit ENTER.
make install

If you are using a C-shell (csh or tcsh), you must run the command
rehash

to make the clamdscan command available. This is not necessary if you are using bash or another
Bourne-compatible shell (there is no rehash command in these shells).

ClamAV needs it own user, caled clamav, which must be in the exim group so that it can access
Exim’s spool files. The ports system creates the user clamav, but it does not add it to the exim

group.

Add clamav to the exim group:
vi [etc/group

Find the line that starts
exi m*:90:

Add clamav to the end of that line, using a comma to separate it from any other user names. Your
own login name should be there already, so the final line looks like this:

exim*:90: yourid, cl amav
Warning: Make sure you use a comma separator, and no spaces.

ClamAV has two daemons. one is the actual virus scanner, and the other (called freshclam) updates
the virus database periodically over the Internet. New viruses are being created al the time. When
you run anti-virus software, it is important to keep it updated. The freshclam daemon makes this
very easy. It is also possible to run the freshclam command manually (see the man page for
details).

The configuration files for the ClamAV daemons are /usr/local/etc/clamd.conf and
/usr/local/etc/freshclam.conf. Suitable defaults should ahve been installed, so you do not need to
change these files.

Before starting the two ClamAV daemons, you must edit /etc/rc.conf to enable them:
vi [etc/rc.conf
Add these lines:

cl amav_cl and_enabl e=" YES"
cl amav_freshcl am enabl e=" YES"

[21]

The daemons should now start automatically whenever you reboot. Next time you reboot, check
that the ClamAV daemons have started.

Now we can start the ClamAV daemons manually:

sh /usr/local/etc/rc.d/clamv-cl and. sh start
sh /usr/local/etc/rc.d/clamav-freshcl am sh start

If al has worked, we can now run some tests of the scanner. How can you test an anti-virus
scanner? You don't want to be sending yourself a real virus! Luckily, a test virus called “eicar”
exigts. It consists of a short string of printing characters.

Create afile that contains this string:

$ cat >/tnp/eicar
X500 PY@AP[4\ PZX54(P*) 7CC) 7} $EI CAR- STANDARD- ANTI VI RUS- TEST- FI LE! $H+H*

The third character is the letter O, not the digit O.

We can use the clamdscan command to check an individual file (or a directory of files) for viruses:
$ cl andscan /tnp/eicar

You should see output like this:
/tnp/eicar: Eicar-Test-Signature FOUND

----------- SCAN SUMWARY -----------
Infected files: 1
Tinme: 0.003 sec (0 mO s)

Now that we have ClamAV working, we can edit Exim’'s configuration so that every message is
scanned for viruses.

Edit /usr/exim/configure and insert this line somewhere near the top, in the main section, before the
first “begin” line:
av_scanner = cl and:/var/run/cl amav/ cl and

This option tells Exim where to find its anti-virus scanner: /var/run/clamav/clamd is a socket that
the ClamAV daemon creates for communication.

Now add some more lines to the acl_check data ACL that you created for SpamAssassin. Add
these lines at the start:

deny nessage Thi s nessage contains \

a virus ($mal ware_nane).
mal ware = *

For reference, the entire ACL should now read like this:

[22]

acl _check_dat a:

deny

war n

war n

accept

message

mal war e
spam

nmessage
nmessage

Thi s nmessage contains \
a virus ($mal ware_nane).
*

nobody

X-is-spam over spamthreshold

X- Spam score: $spam scor e\ n\

X- Spam score_int: $spam score_int\n\
X- Spam bar: $spam bar\ n\

X- Spam report: $spamreport

[] send yourself the eicar test and see what happens (use copy-paste to copy the test data):

$ exim -bs

mai | from <>
rcpt to: <yourname@ourhostname>

dat a

X500 PUGAP[4\ PZX54(P*) 7CC) 7} $EI CAR- STANDARD- ANTI VI RUS- TEST- FI LE! $H+H*

qui t

You could aso try using your MUA to send the test virus to yourself as an attachment.

5.6 What next?

If you have got this far in the available time, you are probably starting to understand the basics of
Exim pretty well. You can either start reading the book, or help out other students who are having

problems.

[23]

