Deploying OSPF for ISPs
ISP/IXP Workshops

Agenda
- OSPF Design in SP Networks
- Adding Networks in OSPF
- OSPF in IOS

OSPF Design
As applicable to Service Provider Networks

Service Providers
- SP networks are divided into PoPs
- Transit routing information is carried via BGP
- IGP is used to carry next hop only
- Optimal path to the next hop is critical

SP Architecture
- Major routing information is ~155K prefixes via BGP
- Largest known IGP routing table is ~6–7K
- Total of 162K
- 6K/162K ~ 4% of IGP routes in an ISP network
- A very small factor but has a huge impact on network convergence!

SP Architecture
- You can reduce the IGP size from 6K to approx the number of routers in your network
- This will bring really fast convergence
- Optimise where you must and summarise where you can
- Stops unnecessary flapping
OSPF Areas and Rules

- Backbone area (0) must be present
- All other areas must have connection to backbone
- Backbone must be contiguous
- Do NOT partition area (0)

OSPF Design: Addressing

- OSPF Design and Addressing go together
- Objective is to keep the Link State Database lean
- Create an address hierarchy to match the topology
- Use separate Address Blocks for network infrastructure, customer interfaces, customers, etc.

OSPF Design: Areas

- Examine physical topology
 - Is it meshed or hub-and-spoke?
- Use areas and summarisation
 - This reduces overhead and LSA counts (but watch next-hop for iBGP when summarising)
- Don’t bother with the various stub areas
 - No benefits for ISPs, causes problems for iBGP
- Push the creation of a backbone
 - Reduces mesh and promotes hierarchy

OSPF Design: Areas

- One SPF per area, flooding done per area
- Watch out for overloading ABRs
- Avoid externals in OSPF
- External LSAs flood through entire network
- Different types of areas do different flooding
 - Normal areas
 - Stub areas
 - Totally stubby (stub no-summary)
 - Not so stubby areas (NSSA)

OSPF Design: Summary

- Think Redundancy
 - Dual Links out of each area – using metrics (cost) for traffic engineering
- Too much redundancy...
 - Dual links to backbone in stub areas must be the same cost – other wise sub-optimal routing will result
 - Too Much Redundancy in the backbone area without good summarization will effect convergence in the area 0
OSPFF: Adding Networks

- **BCP** – Individual OSPF Network statement for each infrastructure link

 Have separate IP address blocks for **infrastructure** and **customer links**

 Use IP Unnumbered Interfaces or IBGP next-hop-self for customer /30 point-to-point links

 OSPF should only carry infrastructure routes in an ISP's network

Method One

- **redistribute connected subnets**

 Works for all connected interfaces on the router but sends networks as external type-2s – which are not summarized

 router ospf 100

 redistribute connected subnets

 Do NOT do this!

 Because:

 Type-2 LSAs flood through entire network

 These LSAs are not all useful for determining paths through backbone; simply take up space

Method Two

- **Specific network statements**

 Every active interface with a configured IP address needs an OSPF network statement

 Interface that will have no OSPF neighbours needs **passive-interface** to disable OSPF Hello’s

 That is: all interfaces connecting to devices outside the ISP backbone (i.e. customers, peers, etc)

 router ospf 100

 network 192.168.1.1 0.0.0.3 area 51

 network 192.168.1.5 0.0.0.3 area 51

 passive interface Serial 1/0

Method Three

- **Network statements – wildcard mask**

 Every active interface with configured IP address covered by wildcard mask used in OSPF network statement

 Interfaces covered by wildcard mask but having no OSPF neighbours need **passive-interface** (or use **passive-interface default** and then activate the interfaces which will have OSPF neighbours)

 router ospf 100

 network 192.168.1.0 0.0.0.255 area 51

 passive-interface default

 no passive interface POS 4/0

Recommendations

- **Don’t ever use Method 1**

- **Method 2** doesn’t scale too well when router has a large number of interfaces but only a few with OSPF neighbours

 → solution is to use Method 3 with "no passive" on interfaces with OSPF neighbours

- **Method 2 is fine for core/infrastructure routers**

- **Method 3 is preferred for aggregation routers**

 Or use IBGP next-hop-self

 Or even ip unnumbered on external point-to-point links

Example One

- Aggregation router with large number of leased line customers and just two links to the core network:

  ```
  interface loopback 0
  ip address 192.168.255.1 255.255.255.255
  interface POS 0/0
  ip address 192.168.10.1 255.255.255.255
  interface POS 1/0
  ip address 192.168.10.5 255.255.255.255
  interface serial 2/0 0
  ip unnumbered loopback 0
  ! Customers connect here ^^^^^^^
  router ospf 100
  network 192.168.255.1 0.0.0.0 area 51
  network 192.168.10.0 0.0.0.3 area 51
  network 192.168.10.4 0.0.0.3 area 51
  passive-interface default
  no passive interface POS 0/0
  no passive interface POS 1/0
  ```
OSPF: Adding Networks

Example Two

- Core router with only links to other core routers (as core routers do!):

```plaintext
interface loopback 0
ip address 192.168.255.1 255.255.255.255
interface POS 0/0
ip address 192.168.10.129 255.255.255.252
interface POS 1/0
ip address 192.168.10.133 255.255.255.252
interface POS 2/0
ip address 192.168.10.137 255.255.255.252
interface POS 2/1
ip address 192.168.10.141 255.255.255.252
router ospf 100
network 192.168.255.1 0.0.0.0 area 0
network 192.168.10.128 0.0.0.3 area 0
network 192.168.10.132 0.0.0.3 area 0
network 192.168.10.136 0.0.0.3 area 0
passive interface loopback 0
```

Summary

- Key Theme when selecting a technique: *Keep the Link State Database Lean*
 - Increases Stability
 - Reduces the amount of information in the Link State Advertisements (LSAs)
 - Speeds Convergence Time

OSPF in IOS

Useful features for ISPs

- Areas defined with 32 bit number
 - Defined in IP address format
 - Can also be defined using single decimal value (i.e., Area 0.0.0.0, or Area 0)
 - 0.0.0.0 reserved for the backbone area

Logging Adjacency Changes

- The router will generate a log message whenever an OSPF neighbour changes state
- Syntax:
  ```plaintext
  [no] [ospf] log-adjacency-changes
  ```
 (OSPF keyword is optional, depending on IOS version)
- Example of a typical log message:
  ```plaintext
  OSPF:5-ADJCHG: Process 1, Ver 223.127.255.223 on Ethernet0 from LOADING to FULL, Loading Done
  ```

Number of State Changes

- The number of state transitions is available via SNMP (ospfNbrEvents) and the CLI:
  ```plaintext
  show ip ospf neighbor [type number] [neighbor-id] [detail]
  ```
 Detail—(Optional) Displays all neighbours given in detail (list all neighbours). When specified, neighbour state transition counters are displayed per interface or neighbour ID
State Changes (Continued)

- To reset OSPF-related statistics, use the `clear ip ospf counters` EXEC command. At this point `neighbor` is the only available option; it will reset neighbour state transition counters per interface or neighbour id.

  ```
  clear ip ospf counters [neighbor [type number] [neighbor-id]]
  ```

Router ID

- If the loopback interface exists and has an IP address, that is used as the router ID in routing protocols – stability!
- If the loopback interface does not exist, or has no IP address, the router ID is the highest IP address configured – danger!
- OSPF sub command to manually set the Router ID:

  ```
  router-id <ip address>
  ```

Cost & Reference Bandwidth

- Bandwidth used in Metric calculation

 Cost = 10^8/bandwidth

 Not useful for interface bandwidths > 100 Mbps

- Syntax:

  ```
  ospf auto-cost reference-bandwidth <reference-bw>
  ```

- Default reference bandwidth still 100 Mbps for backward compatibility
- Most ISPs simply choose to develop their own cost strategy and apply to each interface type

Cost: Example Strategy

<table>
<thead>
<tr>
<th>Bandwidth Type</th>
<th>Bandwidth</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GE/OC192</td>
<td>10Gbps</td>
<td>1</td>
</tr>
<tr>
<td>OC48</td>
<td>2.5Gbps</td>
<td>5</td>
</tr>
<tr>
<td>GigEthernet</td>
<td>1Gbps</td>
<td>10</td>
</tr>
<tr>
<td>OC12</td>
<td>622Mbps</td>
<td>20</td>
</tr>
<tr>
<td>OC3</td>
<td>155Mbps</td>
<td>50</td>
</tr>
<tr>
<td>FastEthernet</td>
<td>100Mbps</td>
<td>100</td>
</tr>
<tr>
<td>Ethernet</td>
<td>10Mbps</td>
<td>500</td>
</tr>
<tr>
<td>E1</td>
<td>2Mbps</td>
<td>1000</td>
</tr>
</tbody>
</table>

Clear/Restart

- OSPF clear commands

 If no process ID is given, all OSPF processes on the router are assumed

  ```
  clear ip ospf [pid] redistribution
  ```

- clear ip ospf [pid] counters

 This command clears counters based on OSPF routing process ID

- clear ip ospf [pid] process

 This command will restart the specified OSPF process. It attempts to keep the old router-id, except in cases, where a new router-id was configured, or an old user configured router-id was removed. Since this command can potentially cause a network churn, a user confirmation is required before performing any action.

Use OSPF Authentication

- Use authentication; too many people overlook this basic feature
- When using authentication, use the MD5 feature

  ```
  area <area-id> authentication message-digest (whole area)
  ip ospf message-digest-key 1 md5 <key>
  ```

- Authentication can be selectively disabled per interface with:

  ```
  ip ospf authentication null
  ```
Tuning OSPF (1)

- **Hello/Dead Timers**
 - `ip ospf hello-interval 3` (default 10)
 - `ip ospf dead-interval 15` (default is 4x hello)

 This allows for faster network awareness of a failure, and can result in faster reconvergence, but requires more router CPU and generates more overhead.

- **LSA Pacing**
 - `timers lsa-group-pacing 300` (default 240)

 This is a great feature; allows grouping and pacing of LSA updates at configured interval; reduces overall network and router impact.

Tuning OSPF (2)

- **DR/BDR Selection**

 - `ip ospf priority 100` (default 1)

 This feature should be in use in your OSPF network; forcibly set your DR and BDR per segment so that they are known; choose your most powerful, or most idle routers; try to keep the DR/BDR limited to one segment each.

- **OSPF Internal Timers**

 - `timers spf 2 8` (default is 5 and 10)

 Allows you to adjust SPF characteristics; first number sets wait time from topology change to SPF run; second is hold-down between SPF runs; BE CAREFUL WITH THIS COMMAND; if you’re not sure when to use it, it means you don’t need it; default is 95% effective.

Tuning OSPF (3)

- **LSA filtering/interface blocking**

 - Per interface:
 - `ip ospf database-filter all out` (no options)

 - Per neighbor:
 - `neighbor 1.1.1.1 database-filter all out` (no options)

 OSPF’s router will flood an LSA out all interfaces except the receiving one. LSA filtering can be useful in cases where such flooding unnecessary (i.e., NBMA networks), where the DR/BDR can handle flooding chores.

- **Improper use can result in routing loops and black-holes that can be very difficult to troubleshoot**

Deploying OSPF for ISPs

ISP/IXP Workshops

Redistributing Routes into OSPF

ROUTER OSPF <pid#x>

REDDISTRIBUTE (protocol) <as#y>

- `<metric>`
- `<metric-type (1 or 2)>`
- `<tag>`
- `<subnets>`
Router Sub-commands

- NETWORK <n.n.n.n> <mask> AREA <area-id>
- AREA <area-id> STUB {no-summary}
- AREA <area-id> AUTHENTICATION
- AREA <area-id> DEFAULT_COST <cost>
- AREA <area-id> VIRTUAL-LINK <router-id>...
- AREA <area-id> RANGE <address mask>

Interface Subcommands

- IP OSPF COST <cost>
- IP OSPF PRIORITY <8-bit-number>
- IP OSPF HELLO-INTERVAL <number-of-seconds>
- IP OSPF DEAD-INTERVAL <number-of-seconds>
- IP OSPF AUTHENTICATION-KEY <8-bytes-of-password>