Introduction to BGP

ISP/IXP Workshops

Border Gateway Protocol

- Routing Protocol used to exchange routing information between networks
 exterior gateway protocol
- Described in RFC1771
 work in progress to update
- The Autonomous System is BGP’s fundamental operating unit
 It is used to uniquely identify networks with common routing policy

BGP

- Path Vector Protocol
- Incremental Updates
- Many options for policy enforcement
- Classless Inter Domain Routing (CIDR)
- Widely used for Internet backbone
- Autonomous systems

Path Vector Protocol

- BGP is classified as a path vector routing protocol (see RFC 1322)
 A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination.

Definitions

- Transit – carrying traffic across a network, usually for a fee
- Peering – exchanging routing information and traffic
- Default – where to send traffic when there is no explicit match in the routing table
Default Free Zone

The default free zone is made up of Internet routers which have explicit routing information about the rest of the Internet, and therefore do not need to use a default route.

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique number

Autonomous System Number (ASN)

- An ASN is a 16 bit number
 - 1-64511 are assigned by the RIRs
 - 64512-65534 are for private use and should never appear on the Internet
 - 0 and 65535 are reserved
- 32 bit ASNs are coming soon
- ASNs are distributed by the Regional Internet Registries
 - Also available from upstream ISPs who are members of one of the RIRs
 - Current ASN allocations up to 38911 have been made to the RIRs

Demarcation Zone (DMZ)

- Shared network between ASes

BGP Basics

BGP speakers are called peers
BGP General Operation

- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the forwarding table
- Policies applied by influencing the best path selection

Constructing the Forwarding Table

- BGP “in” process
 - receives path information from peers
 - results of BGP path selection placed in the BGP table
 - “best path” flagged
- BGP “out” process
 - announces “best path” information to peers
- Best paths installed in forwarding table if:
 - prefix and prefix length are unique
 - lowest “protocol distance”

Constructing the Forwarding Table

- BGP in process
 - receives path information from peers
 - results of BGP path selection placed in the BGP table
 - “best path” flagged
- BGP out process
 - announces “best path” information to peers
- Best paths installed in forwarding table if:
 - prefix and prefix length are unique
 - lowest “protocol distance”

eBGP & iBGP

- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry
 - some/all Internet prefixes across ISP backbone
 - ISP’s customer prefixes
- eBGP used to
 - exchange prefixes with other ASes
 - implement routing policy

BGP/IGP model used in ISP networks

- Model representation

External BGP Peering (eBGP)

- Between BGP speakers in different AS
- Should be directly connected
- Never run an IGP between eBGP peers
Configuring External BGP

Router A in AS100

```
interface ethernet 5/0
  ip address 102.102.10.2 255.255.255.240
  !
router bgp 100
  network 100.100.8.0 mask 255.255.252.0
  neighbor 102.102.10.1 remote-as 101
  neighbor 102.102.10.1 prefix-list RouterC in
  neighbor 102.102.10.1 prefix-list RouterC out
```

Router C in AS101

```
interface ethernet 1/0/0
  ip address 102.102.10.1 255.255.255.240
  !
router bgp 101
  network 100.100.8.0 mask 255.255.252.0
  neighbor 102.102.10.2 remote-as 100
  neighbor 102.102.10.2 prefix-list RouterA in
  neighbor 102.102.10.2 prefix-list RouterA out
```

Internal BGP (iBGP)

- BGP peer within the same AS
- Not required to be directly connected
 IGP takes care of inter-BGP speaker connectivity
- iBGP speakers need to be fully meshed
 they originate connected networks
- they do not pass on prefixes learned from other iBGP speakers

Internal BGP Peering (iBGP)

- Topology independent
- Each iBGP speaker must peer with every other iBGP speaker in the AS

Peering to Loop-back Address

- Peer with loop-back address
 Loop-back interface does not go down – ever!
- iBGP session is not dependent on state of a single interface
- iBGP session is not dependent on physical topology

Configuring Internal BGP

Router A in AS100

```
interface loopback 0
  ip address 105.3.7.1 255.255.255.255
  !
router bgp 100
  network 105.3.7.0
  neighbor 105.3.7.2 remote-as 100
  neighbor 105.3.7.3 remote-as 100
  neighbor 105.3.7.3 update-source loopback0
```

Router B loopback interface
Configuring Internal BGP

Router B in AS100

```config
interface loopback 0
  ip address 105.3.7.2 255.255.255.255

router bgp 100
  network 100.100.1.0
  neighbor 105.3.7.1 remote-as 100
  neighbor 105.3.7.1 update-source loopback0
  neighbor 105.3.7.3 remote-as 100
  neighbor 105.3.7.3 update-source loopback0
```

Inserting prefixes into BGP

- Two ways to insert prefixes into BGP
 - redistribute static

```
router bgp 100
  redistribute static
  ip route 102.10.32.0 255.255.254.0 serial0
```

Inserting prefixes into BGP – redistribute static

- **Configuration Example:**
 - `router bgp 100`
 - `redistribute static`
 - `ip route 102.10.32.0 255.255.254.0 serial0`
- Static route must exist before redistribute command will work
- Forces origin to be “incomplete”
- Care required!

Inserting prefixes into BGP – network command

- **Configuration Example**
 - `router bgp 100`
 - `network 102.10.32.0 mask 255.255.254.0 serial0`
- A matching route must exist in the routing table before the network is announced
- Forces origin to be “IGP”

Configuring Aggregation

- **Three ways to configure route aggregation**
 - redistribute static
 - aggregate-address
 - network command
Configuring Aggregation

- Configuration Example:

 router bgp 100
 redistribute static
 ip route 102.10.0.0 255.255.0.0 null0 250

- static route to “null0” is called a pull up route
 packets only sent here if there is no more specific match in the routing table
 distance of 250 ensures this is last resort static care required – see previously!

Configuring Aggregation – Network Command

- Configuration Example:

 router bgp 100
 network 102.10.0.0 mask 255.255.0.0
 ip route 102.10.0.0 255.255.0.0 null0 250

- A matching route must exist in the routing table before the network is announced
- Easiest and best way of generating an aggregate

Configuring Aggregation – aggregate-address command

- Configuration Example:

 router bgp 100
 network 102.10.0.0 mask 255.255.0.0
 aggregate-address 102.10.0.0 255.255.0.0 [summary-only]

- Requires more specific prefix in BGP table before aggregate is announced
- (summary-only) keyword
 optional keyword which ensures that only the summary is announced if a more specific prefix exists in the routing table

Historical Defaults – Auto Summarisation

- Disable historical default 1

 Automatically summarises subprefixes to the classful network when redistributing to BGP from another routing protocol

 Example:

 61.10.8.0/22 → 61.0.0.0/8

- Must be turned off for any Internet connected site using BGP

 router bgp 100
 no auto-summary

Historical Defaults – Synchronisation

- Disable historical default 2

 In Cisco IOS, BGP does not advertise a route before all routers in the AS have learned it via an IGP

- Disable synchronisation if:

 AS doesn’t pass traffic from one AS to another, or
 All transit routers in AS run BGP, or
 iBGP used across backbone

 router bgp 100
 no synchronization

Summary BGP neighbour status

- BGP Version
- Updates sent and received
- Updates waiting

- AS Neighbor Magneto
- In-Out Up/Down State/Status
- 100.1.21.224 4 10 105 103 0 27 0 0 0 0 1
- 100.2.21.224 4 10 44 47 0 27 0 0 0 0 1
- 100.3.21.224 4 10 71 70 0 27 0 0 0 0 1
- 100.4.21.224 4 10 100 100 0 27 0 0 0 0 1

- Neighbor
- BGP Version
- Updates sent and received
- Updates waiting

- 100.1.21.224
- 100.2.21.224
- 100.3.21.224
- 100.4.21.224
Summary

- BGP4 – path vector protocol
- iBGP versus eBGP
- stable iBGP – peer with loopbacks
- announcing prefixes & aggregates
- no synchronization & no auto-summary