Why Multihome?

- Redundancy
 One connection to internet means the network is dependent on:
 - Local router (configuration, software, hardware)
 - WAN media (physical failure, carrier failure)
 - Upstream Service Provider (configuration, software, hardware)

- Reliability
 Business critical applications demand continuous availability
 Lack of redundancy implies lack of reliability implies loss of revenue

- Supplier Diversity
 Many businesses demand supplier diversity as a matter of course
 - Internet connection from two or more suppliers
 - With two or more diverse WAN paths
 - With two or more exit points
 - With two or more international connections
 - Two of everything

- Not really a reason, but oft quoted…
 - Leverage:
 - Playing one ISP off against the other for:
 - Service Quality
 - Service Offerings
 - Availability

- Summary:
 Multihoming is easy to demand as requirement of any operation
 But what does it really mean:
 - In real life?
 - For the network?
 - For the Internet?
 - And how do we do it?
Multihoming Definition

- More than one link external to the local network
 - two or more links to the same ISP
 - two or more links to different ISPs
- Usually two external facing routers
 - one router gives link and provider redundancy only

Multihoming

- The scenarios described here apply equally well to end sites being customers of ISPs and ISPs being customers of other ISPs
- Implementation detail may be different
 - end site → ISP ISP controls config
 - ISP1 → ISP2 ISPs share config

AS Numbers

- An Autonomous System Number is required by BGP
- Obtained from upstream ISP or Regional Registry (RIR)
 - AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC
- Necessary when you have links to more than one ISP or an exchange point
- 16 bit integer, ranging from 1 to 65534
 - Zero and 65535 are reserved
 - 64512 through 65534 are called Private ASNs

Private-AS – Application

- Applications
 - An ISP with customers multihomed on their backbone (RFC2270)
 - or-
 - A corporate network with several regions but connections to the Internet only in the core
 - or-
 - Within a BGP Confederation

Private-AS – removal

- Private ASNs MUST be removed from all prefixes announced to the public Internet
 - Include configuration to remove private ASNs in the eBGP template
- As with RFC1918 address space, private ASNs are intended for internal use
 - They should not be leaked to the public Internet
- Cisco IOS
 - `neighbor x.x.x.x remove-private-AS`

Configuring Policy

- Assumptions:
 - prefix-lists are used throughout
 - easier/better/faster than access-lists
- Three BASIC Principles
 - `prefix-lists` to filter prefixes
 - `filter-lists` to filter ASNs
 - `route-maps` to apply policy
- Route-maps can be used for filtering, but this is more “advanced” configuration
Policy Tools

- Local preference
 outbound traffic flows
- Metric (MED)
 inbound traffic flows (local scope)
- AS-PATH prepend
 inbound traffic flows (Internet scope)
- Communities
 specific inter-provider peering

Originating Prefixes: Assumptions

- MUST announce assigned address block to Internet
- MAY also announce subprefixes – reachability is not guaranteed
- Current RIR minimum allocation is /21
 Several ISPs filter RIR blocks on this boundary
 Several ISPs filter the rest of address space according to the IANA assignments
 This activity is called “Net Police” by some

Originating Prefixes

- Some ISPs publish their minimum allocation sizes per /8 address block
 ARIN: www.arin.net/policies/lrpol-v4200407-000.htm
 APNIC: www.apnic.net/db/min-alloc.html
 RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html
 Note that ARIN only publishes its current minimum allocation size, not the allocation size for its address blocks
- IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:
 www.iana.org/assignments/ipv4-address-space
- Several ISPs use this published information to filter prefixes on:
 What should be routed (from IANA)
 The minimum allocation size from the RIRs

“Net Police” prefix list issues

- meant to “punish” ISPs who pollute the routing table with specifics rather than announcing aggregates
- impacts legitimate multihoming especially at the Internet’s edge
- impacts regions where domestic backbone is unavailable or costs $$$ compared with international bandwidth
- hard to maintain – requires updating when RIRs start allocating from new address blocks
- don’t do it unless consequences understood and you are prepared to keep the list current

Multihoming Scenarios

- Stub network
- Multi-homed stub network
- Multi-homed network
- Configuration Options

Multihoming Options

Multihoming Scenarios
Stub Network
- No need for BGP
- Point static default to upstream ISP
- Upstream ISP advertises stub network
- Policy confined within upstream ISP’s policy

Multi-homed Stub Network
- Use BGP (not IGP or static) to loadshare
- Use private AS (ASN > 64511)
- Upstream ISP advertises stub network
- Policy confined within upstream ISP’s policy

Multi-Homed Network
- Many situations possible
 - multiple sessions to same ISP
 - secondary for backup only
 - load-share between primary and secondary
 - selectively use different ISPs

Multiple Sessions to an ISP
- Several options
 - eBGP multihop
 - bgp multipath
 - cef loadsharing
 - bgp attribute manipulation

Multiple Sessions to an ISP — Example One
- Use eBGP multihop
 - eBGP to loopback addresses
 - eBGP prefixes learned with loopback address as next hop
- Cisco IOS
 - router bgp 65534
 - neighbor 1.1.1.1 remote-as 200
 - neighbor 1.1.1.1 ebgp-multihop 2
 - ip route 1.1.1.1 255.255.255.255 serial 1/0
 - ip route 1.1.1.1 255.255.255.255 serial 1/1
 - ip route 1.1.1.1 255.255.255.255 serial 1/2

Multiple Sessions to an ISP — Example One
- Try and avoid use of ebgp-multihop unless:
 - It’s absolutely necessary — or —
 - Loadsharing across multiple links
- Many ISPs discourage its use, for example:
 - routing loops
 - failure to realise that BGP session stability problems are usually due to connectivity problems between their CPE and their BGP speaker
Multiple Sessions to an ISP

- Three BGP sessions required
- limit of 6 parallel paths

```
router bgp 201
neighbor 1.1.2.1 remote-as 200
neighbor 1.1.2.5 remote-as 200
neighbor 1.1.2.9 remote-as 200
maximum-paths 3
```

- Use eBGP multi-path to install multiple paths in IP table
  ```
  router bgp 201
  maximum-path <1-6>
  ```
 - Load share over the alternate paths per destination loadsharing

Multiple Sessions to an ISP

- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing
 - Point default towards one ISP
 - Learn selected prefixes from second ISP
 - Modify the number of prefixes learnt to achieve acceptable load sharing
- No magic solution

Preparing the Network

- We will deploy BGP across the network before we try and multihome
- BGP will be used therefore an ASN is required
- If multihoming to different ISPs, public ASN needed:
 - Either go to upstream ISP who is a registry member, or
 - Apply to the RIR yourself for a one off assignment, or
 - Ask an ISP who is a registry member, or
 - Join the RIR and get your own IP address allocation too (this option strongly recommended)!

Preparing the Network

- The network is not running any BGP at the moment
 - single statically routed connection to upstream ISP
- The network is not running any IGP at all
 - Static default and routes through the network to do “routing”
Preparing the Network
First Step: IGP

- Decide on IGP: OSPF or ISIS
- Assign loopback interfaces and /32 addresses to each router which will run the IGP
 - Loopback is OSPF and BGP router id
 - Used for IBGP and route origination
- Deploy IGP (e.g. OSPF)
 - IGP can be deployed with NO IMPACT on the existing static routing
 - OSPF distance is 110, static distance is 1
 - Smallest distance wins

Preparing the Network
Second Step: IBGP

- Second step is to configure the local network to use IBGP
- IBGP can run on all routers, or a subset of routers, or just on the upstream edge
- IBGP must run on all routers which are in the transit path between external connections

Preparing the Network
Second Step: IBGP (Transit Path)

- IBGP must run on all routers which are in the transit path between external connections
- Routers C, E and F are not in the transit path
 - Static routes or IGP will suffice
- Router D is in the transit path
 - Will need to be in IBGP mesh, otherwise routing loops will result

Preparing the Network
Layers

- Typical SP networks have three layers: Core – the backbone, usually the transit path
 - Distribution – the middle, PoP aggregation layer
 - Aggregation – the edge, the devices connecting customers

Preparing the Network
Aggregation Layer

- IBGP is optional
 - Many ISPs run IBGP here, either partial routing (more common) or full routing (less common)
 - Full routing is not needed unless customers want full table
 - Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing
 - Communities and peer-groups make this administratively easy
- Many aggregation devices can’t run IBGP
 - Static routes from distribution devices for address pools
 - IGP for best exit

Preparing the Network
Distribution Layer

- Usually runs IBGP
 - Partial or full routing (as with aggregation layer)
- But does not have to run IBGP
 - IGP is then used to carry customer prefixes (does not scale)
 - IGP is used to determine nearest exit
- Networks which plan to grow large should deploy IBGP from day one
 - Migration at a later date is extra work
 - No extra overhead in deploying IBGP, indeed IGP benefits
Preparing the Network
Core Layer

- Core of network is usually the transit path
- iBGP necessary between core devices
 - Full routes or partial routes:
 - Transit ISPs carry full routes in core
 - Edge ISPs carry partial routes only
- Core layer includes AS border routers

Preparing the Network
iBGP Implementation

- Decide on:
 - Best iBGP policy (full vs partial route mix)
 - iBGP scaling technique (communities, route-reflectors, peer-groups)
- Then deploy iBGP:
 1. Introduce iBGP (making sure that BGP distance is greater than IGP distance)
 2. Install customer prefixes into iBGP
 3. Make iBGP distance less than IGP
 4. Withdraw customer prefixes from the IGP/static routes
 5. Restore BGP distance to greater than IGP distance
 6. Deployment of eBGP follows

Preparing the Network
Configuration

- Before BGP

 interface loopback 0
 ip address 121.10.255.1 255.255.255.255

 interface serial 0/0
 ip address 121.10.0.1 255.255.255.252

 interface serial 0/1
 ip address 121.10.0.2 255.255.255.252

 router ospf 100
 network 121.10.255.0 0.0.0.0 area 0

 redistribute connected
 route-map point-to-point
 neighbor 121.10.1.2 remote-as 100
 neighbor 121.10.1.2 next-hop-self

 network 121.10.24.0 mask 255.255.255.0
 network 121.10.28.0 mask 255.255.254.0

 distance bgp 200 200 200

 ip route 121.10.24.0 255.255.255.252.0 serial 0/0
 ip route 121.10.28.0 255.255.255.254.0 serial 0/1

- Steps 1 & 2

 ! interface and OSPF configuration unchanged

 router ospf 100
 redistribute connected route-map point-to-point
 neighbor 121.10.1.2 remote-as 100
 neighbor 121.10.1.2 next-hop-self

 network 121.10.24.0 mask 255.255.255.0
 network 121.10.28.0 mask 255.255.254.0

 distance bgp 200 200 200

 ip route 121.10.24.0 255.255.255.252.0 serial 0/0
 ip route 121.10.28.0 255.255.255.254.0 serial 0/1

- Steps 3 & 4

 ! interface configuration unchanged

 router ospf 100
 network 121.10.255.1 0.0.0.0 area 0

 ! router bgp 100
 redistribute connected route-map point-to-point
 neighbor 121.10.1.2 remote-as 100
 neighbor 121.10.1.2 next-hop-self

 ..

 ip route 121.10.24.0 255.255.255.252.0 serial 0/0
 ip route 121.10.28.0 255.255.255.254.0 serial 0/1

- Step 5

 ! interface configuration unchanged

 router ospf 100
 network 121.10.255.1 0.0.0.0 area 0

 ! router bgp 100
 redistribute connected route-map point-to-point
 neighbor 121.10.1.2 remote-as 100
 neighbor 121.10.1.2 next-hop-self

 ..

 ip route 121.10.24.0 255.255.255.252.0 serial 0/0
 ip route 121.10.28.0 255.255.255.254.0 serial 0/1

 ospf redistribution has been removed

 OSPF redistribution has been removed

OSPF redistribution has been removed

BGP distance restored

BGP distance restored

BGP distance restored
Preparing the Network Configuration Summary

• Customer networks are now in iBGP
 iBGP deployed over the backbone
 Full or Partial or Upstream Edge only
• BGP distance is greater than any IGP
• Now ready to deploy eBGP

Basic Multihoming

Let’s learn to walk before we try running...

Basic Multihoming

• No frills multihoming
 • Will look at two cases:
 Multihoming with the same ISP
 Multihoming to different ISPs
 • Will keep the examples easy
 Understanding easy concepts will make the more complex scenarios easier to comprehend

Basic Multihoming

• This type is most commonplace at the edge of the Internet
 Networks here are usually concerned with inbound traffic flows
 Outbound traffic flows being “nearest exit” is usually sufficient
• Can apply to the leaf ISP as well as Enterprise networks

Two links to the same ISP

Basic – No Redundancy

Two links to the same ISP

• Can use BGP for this to aid loadsharing
 use a private AS (ASN > 64511)
• upstream ISP proxy aggregates
 in other words, announces only your address block to the Internet (as would be done if you had one statically routed connection)
Two links to the same ISP

- AS100 proxy aggregates for AS 65534

Two links to the same ISP

- Split /19 and announce as two /20s, one on each link
 basic inbound loadsharing
- Example has no practical use, but demonstrates the principles

Two links to the same ISP

- Router A Configuration
  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.240.0
  network 121.10.16.0 mask 255.255.240.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 prefix-list routerC out
  neighbor 122.102.10.2 prefix-list default in
  !
  ip prefix-list default permit 0.0.0.0/0
  ip prefix-list routerC permit 121.10.0.0/20
  !
  ip route 121.10.0.0 255.255.240.0 null0
  ip route 121.10.16.0 255.255.240.0 null0
  ```

Two links to the same ISP

- Router B Configuration
  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.240.0
  network 121.10.16.0 mask 255.255.240.0
  neighbor 122.102.10.6 remote-as 100
  neighbor 122.102.10.6 prefix-list routerD out
  neighbor 122.102.10.6 prefix-list default in
  !
  ip prefix-list default permit 0.0.0.0/0
  ip prefix-list routerD permit 121.10.16.0/20
  !
  ip route 121.10.0.0 255.255.240.0 null0
  ip route 121.10.16.0 255.255.240.0 null0
  ```

Two links to the same ISP

- Router C Configuration
  ```
  router bgp 100
  neighbor 122.102.10.1 remote-as 65534
  neighbor 122.102.10.1 default-originate
  neighbor 122.102.10.1 prefix-list Customer in
  neighbor 122.102.10.1 prefix-list default out
  !
  ip prefix-list Customer permit 121.10.0.0/20
  ip prefix-list default permit 0.0.0.0/0
  ```

Two links to the same ISP

- Router D Configuration
  ```
  router bgp 100
  neighbor 122.102.10.5 remote-as 65534
  neighbor 122.102.10.5 default-originate
  neighbor 122.102.10.5 prefix-list Customer in
  neighbor 122.102.10.5 prefix-list default out
  !
  ip prefix-list Customer permit 121.10.16.0/20
  ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP

• Router E is AS100 border router
 removes prefixes in the private AS from external announcements
 implements the proxy aggregation for the customer prefixes

Two links to the same ISP

• Big Problem:
 no backup in case of link failure
• /19 address block not announced
• AS Path filtering “awkward”
 easier to use bgp command
 neighbor x.x.x.x remove-private-AS

Two links to the same ISP

• Router E Configuration
 router bgp 100
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 filter-list 1 out
 ip route 121.10.0.0 255.255.224.0 null0
 ip as-path access-list 1 deny ^65534$
 ip as-path access-list 1 permit ^$

• Private AS still visible inside AS100

Two links to the same ISP

• One link primary, the other link backup only

Two links to the same ISP

• Applies when end-site has bought a large primary WAN link to their upstream a small secondary WAN link as the backup
 For example, primary path might be an E1, backup might be 64kbps

Two links to the same ISP

• AS100 removes private AS and any customer subprefixes from Internet announcement
Two links to the same ISP (one as backup only)

- Announce /19 aggregate on each link
 - primary link:
 - Outbound – announce /19 unaltered
 - Inbound – receive default route
 - backup link:
 - Outbound – announce /19 with increased metric
 - Inbound – received default, and reduce local preference
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Router A Configuration
```bash
router bgp 65534
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.2 remote-as 100
neighbor 122.102.10.2 description RouterC
neighbor 122.102.10.2 prefix-list aggregate out
neighbor 122.102.10.2 prefix-list default in
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

Router B Configuration
```bash
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerD-out permit 10
match ip address prefix-list aggregate
set metric 10
route-map routerD-out permit 20
!
route-map routerD-in permit 10
set local-preference 90
```

Router C Configuration (main link)
```bash
router bgp 100
neighbor 122.102.10.1 remote-as 65534
neighbor 122.102.10.2 default-originate
neighbor 122.102.10.2 prefix-list Customer in
neighbor 122.102.10.2 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

Router D Configuration (backup link)
```bash
router bgp 100
neighbor 122.102.10.5 remote-as 65534
neighbor 122.102.10.5 default-originate
neighbor 122.102.10.5 prefix-list Customer in
neighbor 122.102.10.5 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```
Two links to the same ISP (one as backup only)

- Router E Configuration
 router bgp 100
 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 remove-private-AS
 neighbor 122.102.10.17 prefix-list Customer out
 ip prefix-list Customer permit 121.10.0.0/19
- Router E removes the private AS and customer’s subprefixes from external announcements
- Private AS still visible inside AS100

Loadsharing to the same ISP

- More common case
- End sites tend not to buy circuits and leave them idle, only used for backup as in previous example
- This example assumes equal capacity circuits
 Unequal capacity circuits requires more refinement – see later

Loadsharing to the same ISP (with redundancy)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
 basic inbound loadsharing
 assumes equal circuit capacity and even spread of traffic across address block
- Vary the split until “perfect” loadsharing achieved
- Accept the default from upstream
 basic outbound loadsharing by nearest exit
 okay in first approx as most ISP and end-site traffic is inbound

Router A Configuration
router bgp 65534
network 121.10.0.0 mask 255.255.224.0
network 121.10.0.0 mask 255.255.240.0
neighbor 122.102.10.2 remote-as 100
neighbor 122.102.10.2 prefix-list routerC out
neighbor 122.102.10.2 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerC permit 121.10.0.0/20
ip prefix-list routerC permit 121.10.0.0/19
ip route 121.10.0.0 255.255.240.0 null10
ip route 121.10.0.0 255.255.224.0 null10
Loadsharing to the same ISP (with redundancy)

- **Router B Configuration**

 router bgp 65534
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.16.0 mask 255.255.240.0
 neighbor 122.102.10.6 remote-as 100
 neighbor 122.102.10.6 prefix-list routerD out
 neighbor 122.102.10.6 prefix-list default in

 ip prefix-list default permit 0.0.0.0/0
 ip prefix-list routerD permit 121.10.16.0/20
 ip prefix-list routerD permit 121.10.0.0/19

 ip route 121.10.16.0 255.255.240.0 null0
 ip route 121.10.0.0 255.255.224.0 null0

Loadsharing to the same ISP (with redundancy)

- **Router C Configuration**

 router bgp 100
 neighbor 122.102.10.1 remote-as 65534
 neighbor 122.102.10.1 default-originate
 neighbor 122.102.10.1 prefix-list Customer in

 ip prefix-list Customer permit 121.10.0.0/19 le 20
 ip prefix-list default permit 0.0.0.0/0

 Router C only allows in /19 and /20 prefixes from customer block

 Router D configuration is identical

Loadsharing to the same ISP (with redundancy)

- **Router E Configuration**

 router bgp 100
 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 remove-private-AS
 neighbor 122.102.10.17 prefix-list Customer out

 ip prefix-list Customer permit 121.10.0.0/19

 Private AS still visible inside AS100

Loadsharing to the same ISP (with redundancy)

- Loadsharing configuration is only on customer router
- Upstream ISP has to
 - remove customer subprefixes from external announcements
 - remove private AS from external announcements
- Could also use BGP communities

Two links to the same ISP

Multiple Dualhomed Customers (RFC2270)
Multiple Dualhomed Customers (RFC2270)

- Unusual for an ISP just to have one dualhomed customer
 Valid/valuable service offering for an ISP with multiple PoPs
 Better for ISP than having customer multihomed with another provider
- Look at scaling the configuration
 → Simplifying the configuration
 Using templates, peer-groups, etc
 Every customer has the same configuration (basically)

Customer announcements as per previous example
- Use the same private AS for each customer documented in RFC2270
 address space is not overlapping each customer hears default only
- Router An and Bn configuration same as Router A and B previously

Router A1 Configuration
```
router bgp 65534
  neighbor bgp-customers peer-group
  neighbor bgp-customers remote-as 65534
  neighbor bgp-customers default-originate
  neighbor bgp-customers prefix-list default out
>
  neighbor 122.102.10.6 peer-group bgp-customers
  neighbor 122.102.10.6 description Customer One
  neighbor 122.102.10.6 prefix-list Customer1 in
  neighbor 122.102.10.9 peer-group bgp-customers
  neighbor 122.102.10.9 description Customer Two
  neighbor 122.102.10.9 prefix-list Customer2 in
```

Router B1 Configuration
```
router bgp 65534
  neighbor bgp-customers peer-group
  neighbor bgp-customers remote-as 65534
  neighbor bgp-customers default-originate
  neighbor bgp-customers prefix-list default out
>
  neighbor 122.102.10.6 peer-group bgp-customers
  neighbor 122.102.10.6 description Customer One
  neighbor 122.102.10.6 prefix-list Customer1 in
  neighbor 122.102.10.9 peer-group bgp-customers
  neighbor 122.102.10.9 description Customer Two
  neighbor 122.102.10.9 prefix-list Customer2 in
```

Router C Configuration
```
router bgp 65534
  neighbor bgp-customers peer-group
  neighbor bgp-customers remote-as 65534
  neighbor bgp-customers default-originate
  neighbor bgp-customers prefix-list default out
>
  neighbor 122.102.10.6 peer-group bgp-customers
  neighbor 122.102.10.6 description Customer One
  neighbor 122.102.10.6 prefix-list Customer1 in
  neighbor 122.102.10.9 peer-group bgp-customers
  neighbor 122.102.10.9 description Customer Two
  neighbor 122.102.10.9 prefix-list Customer2 in
```
Multiple Dualhomed Customers (RFC2270)

neighbor 122.102.10.17 peer-group bgp-customers
neighbor 122.102.10.17 description Customer Three
neighbor 122.102.10.17 prefix-list Customer3 in
! ip prefix-list Custom1 permit 121.10.0.0/19 le 20
ip prefix-list Custom2 permit 121.16.64.0/19 le 20
ip prefix-list Custom3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0

- Router C only allows in /19 and /20 prefixes from customer block

Multiple Dualhomed Customers (RFC2270)

neighbor 122.102.10.17 peer-group bgp-customers
neighbor 122.102.10.17 description Customer Three
neighbor 122.102.10.17 prefix-list Customer3 in
! ip prefix-list Custom1 permit 121.10.0.0/19 le 20
ip prefix-list Custom2 permit 121.16.64.0/19 le 20
ip prefix-list Custom3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0

- Router D only allows in /19 and /20 prefixes from customer block

Multiple Dualhomed Customers (RFC2270)

neighbor 122.102.10.21 peer-group bgp-customers
neighbor 122.102.10.21 description Customer Three
neighbor 122.102.10.21 prefix-list Customer3 in
! ip prefix-list Custom1 permit 121.10.0.0/19 le 20
ip prefix-list Custom2 permit 121.16.64.0/19 le 20
ip prefix-list Custom3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0

- Router D only allows in /19 and /20 prefixes from customer block

Multiple Dualhomed Customers (RFC2270)

neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 remove-private-AS
neighbor 122.102.10.17 prefix-list my-aggregate out
! ip prefix-list my-aggregate permit 121.8.0.0/13

- Private AS still visible inside AS100

Multiple Dualhomed Customers (RFC2270)

- Router E configuration:
 router bgp 100
 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 remove-private-AS
 neighbor 122.102.10.17 prefix-list my-aggregate out
 ip prefix-list my-aggregate permit 121.8.0.0/13

- Private AS still visible inside AS100

Multihoming Summary

- Use private AS for multihoming to upstream
- Leak subprefixes to upstream only to aid loadsharing
- Upstream Router E configuration is uniform across all scenarios
Basic Multihoming

Multihoming to Different ISPs

Two links to different ISPs

- Use a Public AS
 Or use private AS if agreed with the other ISP
 But some people don’t like the “inconsistent-AS” which results from use of a private-AS
- Address space comes from
 both upstreams or
 Regional Internet Registry
- Configuration concepts very similar

Inconsistent-AS?

- Viewing the prefixes originated by AS65534 in the Internet shows they appear to be originated by both AS210 and AS200
 This is NOT bad
 Nor is it illegal
- IOS command is
 `show ip bgp inconsistent-as`

Two links to different ISPs

Basic – No Redundancy

Two links to different ISPs

(no redundancy)

- Example for PI space
 ISP network, or large enterprise site
- Split /19 and announce as two /20s, one on each link
 basic inbound loadsharing

Two links to different ISPs

(no redundancy)
Two links to different ISPs (no redundancy)

• Router A Configuration
 router bgp 130
 network 121.10.0.0 mask 255.255.240.0
 neighbor 122.102.10.1 remote-as 100
 neighbor 122.102.10.1 prefix-list routerC out
 neighbor 122.102.10.1 prefix-list default in
 !
 ip prefix-list default permit 0.0.0.0/0
 ip prefix-list routerC permit 121.10.0.0/20

• Router B Configuration
 router bgp 130
 network 121.10.16.0 mask 255.255.240.0
 neighbor 120.1.5.1 remote-as 120
 neighbor 120.1.5.1 prefix-list routerD out
 neighbor 120.1.5.1 prefix-list default in
 !
 ip prefix-list default permit 0.0.0.0/0
 ip prefix-list routerD permit 121.10.16.0/20

• Router C Configuration
 router bgp 100
 neighbor 121.10.1.1 remote-as 130
 neighbor 121.10.1.1 default-originate
 neighbor 121.10.1.1 prefix-list AS130cust in
 neighbor 121.10.1.1 prefix-list default-out out
 !
 Router C only announces default to AS 130
 Router C only accepts AS130’s prefix block

• Router D Configuration
 router bgp 120
 neighbor 120.1.5.1 remote-as 130
 neighbor 120.1.5.1 default-originate
 neighbor 120.1.5.1 prefix-list AS130cust in
 neighbor 120.1.5.1 prefix-list default-out out
 !
 Router D only announces default to AS 130
 Router D only accepts AS130’s prefix block

• Big Problem:
 no backup in case of link failure
 /19 address block not announced

Two links to different ISPs (no redundancy)

One link primary, the other link backup only
Announce /19 aggregate on each link
- primary link makes standard announcement
- backup link lengthens the AS PATH by using AS PATH prepend
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Router A Configuration
- network 121.10.0.0 mask 255.255.224.0
- neighbor 122.102.10.1 remote-as 100
- neighbor 122.102.10.1 prefix-list aggregate out
- neighbor 122.102.10.1 prefix-list default in
- ip prefix-list aggregate permit 121.10.0.0/19
- ip prefix-list default permit 0.0.0.0/0

Router B Configuration
- network 121.10.0.0 mask 255.255.224.0
- neighbor 120.1.5.1 remote-as 120
- neighbor 120.1.5.1 prefix-list aggregate out
- neighbor 120.1.5.1 prefix-list default in
- ip prefix-list aggregate permit 121.10.0.0/19
- ip prefix-list default permit 0.0.0.0/0
- route-map routerD-out permit 10
 set as-path prepend 130 130 130
- route-map routerD-in permit 10
 set local-preference 80

Not a common situation as most sites tend to prefer using whatever capacity they have
- But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction

With Redundancy
Two links to different ISPs (with redundancy)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
 - basic inbound loadsharing
- When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity

Two links to different ISPs (with redundancy)

- Router A Configuration
  ```
  router bgp 130
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.0.0 mask 255.255.240.0
  neighbor 122.102.10.1 remote-as 100
  neighbor 122.102.10.1 prefix-list firstblock out
  neighbor 122.102.10.1 prefix-list default in
  !
  ip prefix-list default permit 0.0.0.0/0
  !
  ip prefix-list firstblock permit 121.10.0.0/20
  ip prefix-list firstblock permit 121.10.0.0/19
  ```
- Router B Configuration
  ```
  router bgp 130
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.16.0 mask 255.255.240.0
  neighbor 120.1.5.1 remote-as 120
  neighbor 120.1.5.1 prefix-list secondblock out
  neighbor 120.1.5.1 prefix-list default in
  !
  ip prefix-list default permit 0.0.0.0/0
  !
  ip prefix-list secondblock permit 121.10.16.0/20
  ip prefix-list secondblock permit 121.10.0.0/19
  ```

Two links to different ISPs (with loadsharing)

- Loadsharing in this case is very basic
- But shows the first steps in designing a load sharing solution
 - Start with a simple concept
 - And build on it…!
Loadsharing with different ISPs

- Announce /19 aggregate on each link
 - On first link, announce /19 as normal
 - On second link, announce /19 with longer AS PATH, and announce one /20 subprefix
 - controls loadsharing between upstreams and the Internet
- Vary the subprefix size and AS PATH length until “perfect” loadsharing achieved
- Still require redundancy!

Loadsharing with different ISPs

- Router A Configuration
 router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 100
 neighbor 122.102.10.1 prefix-list default in
 neighbor 122.102.10.1 prefix-list aggregate out
 ip prefix-list aggregate permit 121.10.0.0/19

Loadsharing with different ISPs

- Router B Configuration
 router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.16.0 mask 255.255.240.0
 neighbor 120.1.5.1 remote-as 120
 neighbor 120.1.5.1 prefix-list default in
 neighbor 120.1.5.1 prefix-list subblocks out
 neighbor 120.1.5.1 route-map routerD out
 route-map routerD permit 10
 match ip address prefix-list aggregate
 set as-path prepend 130 130
 route-map routerD permit 20
 ip prefix-list subblocks permit 121.10.0.0/19 1e 20
 ip prefix-list aggregate permit 121.10.0.0/19

Loadsharing with different ISPs

- This example is more commonplace
- Shows how ISPs and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs
- Notice that the /19 aggregate block is ALWAYS announced

BGP Multihoming
ISP/IXP Workshops