Service Provider Multihoming

BGP Traffic Engineering

Service Provider Multihoming

- Previous examples dealt with loadsharing inbound traffic
 - Of primary concern at Internet edge
 - What about outbound traffic?
- Transit ISPs strive to balance traffic flows in both directions
 - Balance link utilisation
 - Try and keep most traffic flows symmetric
 - Some edge ISPs try and do this too
- The original “Traffic Engineering”

Service Provider Multihoming

- Balancing outbound traffic requires inbound routing information
 - Common solution is “full routing table”
 - Rarely necessary
 - Why use the “routing mallet” to try solve loadsharing problems?
 - “Keep it Simple” is often easier (and $$$ cheaper) than carrying N-copies of the full routing table

Service Provider Multihoming

MYTHS!!

- Common MYTHS
 - 1: You need the full routing table to multihome
 - People who sell router memory would like you to believe this
 - Only true if you are a transit provider
 - Full routing table can be a significant hindrance to multihoming
 - 2: You need a BIG router to multihome
 - Router size is related to data rates, not running BGP
 - In reality, to multihome, your router needs to:
 - Have two interfaces,
 - Be able to talk BGP to at least two peers,
 - Be able to handle BGP attributes,
 - Handle at least one prefix
 - 3: BGP is complex
 - In the wrong hands, yes it can be! Keep it Simple!

Service Provider Multihoming

Some Strategies

- Take the prefixes you need to aid traffic engineering
 - Look at NetFlow data for popular sites
- Prefixes originated by your immediate neighbours and their neighbours will do more to aid load balancing than prefixes from ASNs many hops away
 - Concentrate on local destinations
- Use default routing as much as possible
 - Or use the full routing table with care

Service Provider Multihoming

- Examples
 - One upstream, one local peer
 - One upstream, local exchange point
 - Two upstreams, one local peer
 - Tier-1 and regional upstreams, with local peers
- Require BGP and a public ASN
- Examples assume that the local network has their own /19 address block
Service Provider Multihoming

One Upstream, One local peer

- Very common situation in many regions of the Internet
- Connect to upstream transit provider to see the “Internet”
- Connect to the local competition so that local traffic stays local
 Saves spending valuable $ on upstream transit costs for local traffic

One Upstream, One Local Peer

- Announce /19 aggregate on each link
- Accept default route only from upstream
 Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes from local peer

Router A Configuration

```
router bgp 110
    network 121.10.0.0 mask 255.255.224.0
    neighbor 122.102.10.2 remote-as 120
    neighbor 122.102.10.2 filter-list my-block out
    neighbor 122.102.10.2 prefix-list AS120-peer in
  !
  ip prefix-list AS120-peer permit 122.5.16.0/19
  ip prefix-list AS120-peer permit 121.240.0.0/20
  ip prefix-list my-block permit 121.10.0.0/19
  !
  ip route 121.10.0.0 255.255.224.0 null0
```

Prefix filters inbound

AS Path filters - more “trusting”

Router A – Alternative Configuration

```
router bgp 110
    network 121.10.0.0 mask 255.255.224.0
    neighbor 122.102.10.2 remote-as 120
    neighbor 122.102.10.2 filter-list my-block out
    neighbor 122.102.10.2 filter-list 10 in
  !
  ip as-path access-list 10 permit ^(120\_)+$  
  ip prefix-list my-block permit 121.10.0.0/19 
  !
  ip route 121.10.0.0 255.255.224.0 null0
```
One Upstream, One Local Peer

- **Router C Configuration**
 - `router bgp 110`
 - `network 121.10.0.0 mask 255.255.224.0`
 - `neighbor 122.102.10.1 remote-as 130`
 - `neighbor 122.102.10.1 prefix-list default in`
 - `neighbor 122.102.10.1 prefix-list my-block out`
 - `ip prefix-list default permit 0.0.0.0/0`
 - `ip prefix-list my-block permit 121.10.0.0/19`
 - `ip route 121.10.0.0 255.255.224.0 null0`

One Upstream, One Local Peer

- **Two configurations possible for Router A**
 - **Filter-lists assume peer knows what they are doing**
 - **Prefix-list higher maintenance, but safer**
 - Some ISPs use **both**
- **Local traffic goes to and from local peer, everything else goes to upstream**

Service Provider Multihoming

One Upstream, Local Exchange Point

- **Very common situation in many regions of the Internet**
 - Connect to upstream transit provider to see the “Internet”
 - Connect to the local Internet Exchange Point so that local traffic stays local
 - Saves spending valuable $ on upstream transit costs for local traffic

One Upstream, Local Exchange Point

- **Announce /19 aggregate to every neighbouring AS**
- **Accept default route only from upstream**
 - Either 0.0.0.0/0 or a network which can be used as default
- **Accept all routes originated by IXP peers**
Router A Configuration

interface fastethernet 0/0
description Exchange Point LAN
ip address 120.5.10.1 mask 255.255.255.224
ip verify unicast reverse-path
router bgp 110
neighbor ixp-peers peer-group
neighbor ixp-peers prefix-list my-block in
neighbor ixp-peers remove-private-AS

Note that Router A does not generate the aggregate for AS110
If Router A becomes disconnected from backbone, then the aggregate is no longer announced to the IX
BGP failover works as expected

Router C Configuration

router bgp 110
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote-as 130
neighbor 122.102.10.1 prefix-list default in
neighbor 122.102.10.1 prefix-list my-block out
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
ip route 121.10.0.0 255.255.255.0 null0

Note Router A configuration
Prefix-list higher maintenance, but safer
uRPF on the IX facing interface
No generation of AS110 aggregate
IXP traffic goes to and from local IXP, everything else goes to upstream

Aside: Configuration Recommendations (1)

Private Peers
The peering ISPs exchange prefixes they originate
Sometimes they exchange prefixes from neighbouring ASNs too
Be aware that the private peer eBGP router should carry only the prefixes you want the private peer to receive
Otherwise they could point a default route to you and unintentionally transit your backbone
Aside: Configuration Recommendations (2)

- **IXP peers**
 The peering ISPs at the IXP exchange prefixes they originate
 Sometimes they exchange prefixes from neighbouring ASNs too
- Be aware that the IXP border router should carry only the prefixes you want the IXP peers to receive and the destinations you want them to be able to reach
 Otherwise they could point a default route to you and unintentionally transit your backbone
- If IXP router is at IX, and distant from your backbone
 Don’t originate your address block at your IXP router

Two Upstreams, One Local Peer

- Connect to both upstream transit providers to see the “Internet”
 Provides external redundancy and diversity – the reason to multihome
- Connect to the local peer so that local traffic stays local
 Saves spending valuable $ on upstream transit costs for local traffic

- **Announce /19 aggregate on each link**
- Accept default route only from upstreams
 Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes from local peer

- **Router A**
 Same routing configuration as in example with one upstream and one local peer
 Same hardware configuration
Two Upstreams, One Local Peer

- **Router C Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.1 remote-as 130

 neighbor 122.102.10.1 prefix-list default in

 neighbor 122.102.10.1 prefix-list my-block out

 !

 ip prefix-list my-block permit 121.10.0.0/19

 ip prefix-list default permit 0.0.0.0/0

 !

 ip route 121.10.0.0 255.255.224.0 null0

- **Router D Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.5 remote-as 140

 neighbor 122.102.10.5 prefix-list default in

 neighbor 122.102.10.5 prefix-list my-block out

 !

 ip prefix-list my-block permit 121.10.0.0/19

 ip prefix-list default permit 0.0.0.0/0

 !

 ip route 121.10.0.0 255.255.224.0 null0

Two Upstreams, One Local Peer

- This is the simple configuration for Router C and D
- Traffic out to the two upstreams will take nearest exit
 Inexpensive routers required
- This is not useful in practice especially for international links
- Loadsharing needs to be better

Two Upstreams, One Local Peer

- **Better configuration options:**

 Accept full routing from both upstreams

 Expensive & unnecessary!

 Accept default from one upstream and some routes from the other upstream

 The way to go!

Two Upstreams, One Local Peer

- **Router C Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.1 remote-as 130

 neighbor 122.102.10.1 prefix-list rfc1918-deny in

 neighbor 122.102.10.1 prefix-list my-block out

 neighbor 122.102.10.1 route-map AS130-loadshare in

 !

 ip prefix-list my-block permit 121.10.0.0/19

 !

 See www.cymru.com/Documents/bogon-list.html

 !...next slide

Two Upstreams, One Local Peer

- **Router C Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.1 remote-as 130

 neighbor 122.102.10.1 prefix-list rfc1918-deny in

 neighbor 122.102.10.1 prefix-list my-block out

 neighbor 122.102.10.1 route-map AS130-loadshare in

 !

 ip prefix-list my-block permit 121.10.0.0/19

 !

 See www.cymru.com/Documents/bogon-list.html

 !...next slide

Two Upstreams, One Local Peer

- **Router C Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.1 remote-as 130

 neighbor 122.102.10.1 prefix-list rfc1918-deny in

 neighbor 122.102.10.1 prefix-list my-block out

 neighbor 122.102.10.1 route-map AS130-loadshare in

 !

 ip prefix-list my-block permit 121.10.0.0/19

 !

 See www.cymru.com/Documents/bogon-list.html

 !...next slide

Two Upstreams, One Local Peer

- **Router C Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.1 remote-as 130

 neighbor 122.102.10.1 prefix-list rfc1918-deny in

 neighbor 122.102.10.1 prefix-list my-block out

 neighbor 122.102.10.1 route-map AS130-loadshare in

 !

 ip prefix-list my-block permit 121.10.0.0/19

 !

 See www.cymru.com/Documents/bogon-list.html

 !...next slide

Two Upstreams, One Local Peer

- **Router C Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.1 remote-as 130

 neighbor 122.102.10.1 prefix-list rfc1918-deny in

 neighbor 122.102.10.1 prefix-list my-block out

 neighbor 122.102.10.1 route-map AS130-loadshare in

 !

 ip prefix-list my-block permit 121.10.0.0/19

 !

 See www.cymru.com/Documents/bogon-list.html

 !...next slide
Two Upstreams, One Local Peer

Full Routes

- Router D Configuration

  ```
  router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.5 remote-as 140
  neighbor 122.102.10.5 prefix-list rfc1918-deny in
  neighbor 122.102.10.5 prefix-list my-block out
  ip prefix-list my-block permit 121.10.0.0/19
  ! See www.cymru.com/Documents/bogon-list.html
  ! ...for "RFC1918 and friends" list
  ```

 Allow all prefixes in apart from RFC1918 and friends

- Router C Configuration

  ```
  router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.1 remote-as 130
  neighbor 122.102.10.1 prefix-list rfc1918-nodef-deny in
  neighbor 122.102.10.1 prefix-list my-block out
  ip prefix-list my-block permit 121.10.0.0/19
  ! See www.cymru.com/Documents/bogon-list.html
  ! ...for "RFC1918 and friends" list
  ip prefix-list default permit 0.0.0.0/0
  ip route 121.10.0.0 255.255.224.0 null0
  !
  ip as-path access-list 10 permit ^[130_]+$`
  ip as-path access-list 10 permit ^[130_]+_[0-9]+$`
  route-map tag-default-low in
  match ip address prefix-list default
  set local-preference 80
  route-map tag-default-low permit 20
  ```

 Allow all prefixes and default in; deny RFC1918 and friends

Partial Routes

- Strategy:

 - Ask one upstream for a default route
 - Easy to originate default towards a BGP neighbour
 - Ask other upstream for a full routing table
 - Then filter this routing table based on neighbouring ASN
 - E.g. want traffic to their neighbours to go over the link to that ASN
 - Most of what upstream sends is thrown away
 - Easier than asking the upstream to set up custom BGP filters for you

- Router D configuration same as Router C without the route-map

- Router C Configuration

  ```
  router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.5 remote-as 140
  neighbor 122.102.10.5 prefix-list rfc1918-deny in
  neighbor 122.102.10.5 prefix-list my-block out`
  ip prefix-list my-block permit 121.10.0.0/19
  ! See www.cymru.com/Documents/bogon-list.html
  ! ...for "RFC1918 and friends" list
  ```

 AS filter list filters prefixes based on origin ASN

- Router C Configuration

  ```
  router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.1 remote-as 130
  neighbor 122.102.10.1 prefix-list rfc1918-nodef-deny in
  neighbor 122.102.10.1 prefix-list my-block out
  neighbor 122.102.10.1 filter-list 10 in
  neighbor 122.102.10.1 route-map tag-default-low in`
  ```
Two Upstreams, One Local Peer Partial Routes

- **Router D Configuration**

  ```
  router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.1 remote-as 140
  neighbor 122.102.10.5 prefix-list my-block out
  ip prefix-list my-block permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  ip route 121.10.0.0 255.255.224.0 null0
  ```

Two Upstreams, One Local Peer Partial Routes

- **Router C Configuration**

  ```
  router ospf 110
  default-information originate metric 30
  passive-interface Serial 0/0
  
  router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.1 remote-as 130
  neighbor 122.102.10.1 prefix-list rfc1918-deny in
  neighbor 122.102.10.1 prefix-list my-block out
  neighbor 122.102.10.1 filter-list 10 in
  ```

Two Upstreams, One Local Peer Partial Routes

- **Partial routes from upstreams**

 Not expensive – only carry the routes necessary for loadsharing

 Need to filter on AS paths

 Previous example is only an example – real life will need improved fine-tuning!

 Previous example doesn't consider inbound traffic – see earlier in presentation for examples

Two Upstreams, One Local Peer Partial Routes

- **When upstreams cannot or will not announce default route**

 Because of operational policy against using "default-originate" on BGP peering

 Solution is to use IGP to propagate default from the edge/peering routers

Two Upstreams, One Local Peer Partial Routes

- **Router C Configuration**

  ```
  ip prefix-list my-block permit 121.10.0.0/19
  ! See www.cymru.com/Documents/bogon-list.html
  ! ...for "RFC1918 and friends" list
  !
  ip route 121.10.0.0 255.255.224.0 null0
  ip route 0.0.0.0 0.0.0.0 serial 0/0 254
  
  ip as-path access-list 10 permit ^([0-9]+)$
  ip as-path access-list 10 permit ^[130]+([0-9]+)$
  ```

Two Upstreams, One Local Peer Partial Routes

- **Partial route from upstreams**

 Not expensive – only carry the routes necessary for loadsharing

 Need to filter on AS paths

 Previous example is only an example – real life will need improved fine-tuning!

 Previous example doesn't consider inbound traffic – see earlier in presentation for examples
Two Upstreams, One Local Peer
Partial Routes

- **Router D Configuration**
  ```
  router ospf 110
  default-information originate metric 10
  passive-interface Serial 0/0
  
  router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.5 remote-as 140
  neighbor 122.102.10.5 prefix-list deny-all in
  neighbor 122.102.10.5 prefix-list my-block out
  ```

Partial routes from upstreams
- Use OSPF to determine outbound path
- Router D default has metric 10 – primary outbound path
- Router C default has metric 30 – backup outbound path
- Serial interface goes down, static default is removed from routing table, OSPF default withdrawn

Service Provider Multihoming

Two Tier-1 upstreams, two regional upstreams, and local peers

- This is a complex example, bringing together all the concepts learned so far
- Connect to both upstream transit providers to see the "Internet"
 - Provides external redundancy and diversity – the reason to multihome
- Connect to regional upstreams
 - Hopefully a less expensive and lower latency view of the regional internet than is available through upstream transit providers
- Connect to private peers for local peering purposes
- Connect to the local Internet Exchange Point so that local traffic stays local
 - Saves spending valuable $ on upstream transit costs for local traffic
Tier-1 & Regional Upstreams, Local Peers

- Announce /19 aggregate on each link
- Accept partial/default routes from upstreams
 For default, use 0.0.0.0/0 or a network which can be used as default
- Accept all routes from local peer
- Accept all partial routes from regional upstreams
- This is more complex, but a very typical scenario

Tier-1 & Regional Upstreams, Local Peers Detail

- Router A – local private peer
 Accept all (local) routes
 Local traffic stays local
 Use prefix and/or AS-path filters
 Use local preference (if needed)

- Router F – local IXP peering
 Accept all (local) routes
 Local traffic stays local
 Use prefix and/or AS-path filters

Tier-1 & Regional Upstreams, Local Peers Detail

- Router B – regional upstream
 They provide transit to Internet, but longer AS path than Tier-1s
 Accept all regional routes from them
 e.g. ^150_[0-9]+$
 Ask them to send default, or send a network you can use as default
 Set local pref on “default” to 60
 Will provide backup to Internet only when direct Tier-1 links go down

Tier-1 & Regional Upstreams, Local Peers Detail

- Router E – regional upstream
 They provide transit to Internet, but longer AS path than Tier-1s
 Accept all regional routes from them
 e.g. ^160_[0-9]+$
 Ask them to send default, or send a network you can use as default
 Set local pref on “default” to 70
 Will provide backup to Internet only when direct Tier-1 links go down

Tier-1 & Regional Upstreams, Local Peers Detail

- Router C – first Tier-1
 Accept all their customer and AS neighbour routes from them
 e.g. ^130_[0-9]+$
 Ask them to send default, or send a network you can use as default
 Set local pref on “default” to 80
 Will provide backup to Internet only when link to second Tier-1 goes down

Tier-1 & Regional Upstreams, Local Peers Detail

- Router D – second Tier-1
 Ask them to send default, or send a network you can use as default
 This has local preference 100 by default
 All traffic without any more specific path will go out this way
Tier-1 & Regional Upstreams, Local Peers

- Local traffic goes to local peer and IXP
- Regional traffic goes to two regional upstreams
- Everything else is shared between the two Tier-1s
- To modify loadsharing tweak what is heard from the two regionals and the first Tier-1
 Best way is through modifying the AS-path filter

What about outbound announcement strategy?
- This is to determine incoming traffic flows
 /19 aggregate must be announced to everyone!
 /20 or /21 more specifics can be used to improve or modify loadsharing
- See earlier for hints and ideas

What about unequal circuit capacity?
- AS-path filters are very useful
- What if upstream will only give me full routing table or nothing
 AS-path and prefix filters are very useful

Service Provider Multihoming

BGP Traffic Engineering