DNS Session 3:
Configuration of Authoritative Nameservice

Brian Candler
NSRC

Recap

- DNS is a distributed database
- Resolver asks Cache for information
- Cache traverses the DNS delegation tree to find Authoritative nameserver which has the information requested
- Bad configuration of authoritative servers can result in broken domains

DNS Replication

- For every domain, we need more than one authoritative nameserver with the same information (RFC 2182)
- Data is entered in one server (Master) and replicated to the others (Slave(s))
- Outside world cannot tell the difference between master and slave
 → NS records are returned in random order for equal load sharing
- Was called "primary" and "secondary"

Slaves connect to Master to retrieve copy of zone data

When does replication take place?

- Slaves poll the master periodically - called the "Refresh Interval" - to check for new data
 → Originally this was the only mechanism
- With new software, master can also notify the slaves when the data changes
 → Results in quicker updates
- The notification is unreliable (e.g. network might lose a packet) so we still need checks at the Refresh Interval

Serial Numbers

- Every zone file has a Serial Number
- Slave will only copy data when this number INCREASES
 → Periodic UDP query to check Serial Number
 → If increased, TCP transfer of zone data
- It is your responsibility to increase the serial number after every change, otherwise slaves and master will be inconsistent
Recommended serial number format: YYYYMMDDNN

➤ YYYY = year
➤ MM = month (01-12)
➤ DD = day (01-31)
➤ NN = number of changes today (00-99)
➤ e.g. if you change the file on 3rd March 2004, the serial number will be 2004030300. If you change it again on the same day, it will be 2004030301

Serial Numbers: Danger 1

➤ If you ever decrease the serial number, the slaves will never update again until the serial number goes above its previous value
➤ RFC1912 section 3.1 explains how to fix this problem
➤ At worst, you have to contact all your slaves and get them to delete their copy of the zone data

Serial Numbers: Danger 2

➤ Serial no. is a 32-bit unsigned number
➤ Range: 0 to 4,294,967,295
➤ Any value larger than this is silently truncated
➤ e.g. 20040303000 (note extra digit)
➤ = 4AA7EC198 (hex)
➤ = AA7EC198 (32 bits)
➤ = 2860433816
➤ If you make this mistake, then correct it, the serial number will have decreased

Configuration of Master

➤ /etc/namedb/named.conf points to zone file (manually created)
➤ Choose a logical place to keep them
➤ e.g. /etc/namedb/master/tiscali.co.uk
➤ or /etc/namedb/master/uk.co.tiscali

zone "example.com" {
 type master;
 file "master/example.com";
 allow-transfer { 192.188.58.126; 192.188.58.2; };
};

Configuration of Slave

➤ named.conf points to IP address of master and location of zone file
➤ Zone files are transferred automatically
➤ Don’t touch them

zone "example.com" {
 type slave;
 masters { 192.188.58.126; };
 file "slave/example.com";
 allow-transfer { none; };
};

Master and Slave

➤ It’s perfectly OK for one server to be Master for some zones and Slave for others
➤ That’s why we recommend keeping the files in different directories
➤ /etc/namedb/master/
➤ /etc/namedb/slave/
➤ (also, the slave directory can have appropriate permissions so that named itself can write to it)
allow-transfer { ... }

- Remote machines can request a transfer of the entire zone contents
- By default, this is permitted to anyone
- Better to restrict this
- You can set a global default, and override this for each zone if required

```plaintext
options {
    allow-transfer { 127.0.0.1; }
};
```

Structure of a zone file

- Global options
 → $TTL 1d
 → Sets the default TTL for all other records
- SOA RR
 → "Start Of Authority"
 → Housekeeping information for the zone
- NS RR
 → List all the nameservers for the zone, master and slaves
- Other RR
 → The actual data you wish to publish

Format of a Resource Record

<table>
<thead>
<tr>
<th>Domain</th>
<th>TTL</th>
<th>Class</th>
<th>Type</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>www</td>
<td>3600</td>
<td>IN</td>
<td>A</td>
<td>212.74.112.80</td>
</tr>
</tbody>
</table>

- One per line (except SOA can extend over several lines)
- If you omit the Domain Name, it is the same as the previous line
- TTL shortcuts: eg. 60s, 30m, 4h, 1w2d
- If you omit the TTL, it takes the $TTL default value
- If you omit the Class, it defaults to IN
- Type and Data cannot be omitted
- Comments start with SEMICOLON (;)

Shortcuts

- If the Domain Name does not end in a dot, the zone's own domain ("origin") is appended
- A Domain Name of "@" means the origin itself
- e.g. in zone file for example.com:
 → @ means example.com.

If you write this...

```plaintext
$TTL 1d
@       SOA ( ... )
    NS ns0
    NS ns0.as9105.net.
; Main webserver
www            A    212.74.112.80
    MX 10 mail
```

... it becomes this

```plaintext
example.com.  86400 IN SOA ( ... )
example.com.  86400 IN NS ns0.example.com.
example.com.  86400 IN NS ns0.as9105.net.
www.example.com.  86400 IN A 212.74.112.80
www.example.com.  86400 IN MX 10 mail.example.com.
```

Format of the SOA record

```plaintext
$TTL 1d
@ 1h  IN  SOA  nsl.example.net.  brian.nsro.org. ( 2004030300 ; Serial
    8h  ; Refresh
    1h  ; Retry
     4w ; Expire
     1h ) ; Negative
```
Format of SOA record

- ns1.example.net
 → hostname of master nameserver
- brian.nsrc.org.
 → E-mail address of responsible person, with "@" changed to dot
- Serial number
- Refresh interval
 → How often Slave checks serial number on Master
- Retry interval
 → How often Slave checks serial number if the master did not respond

Format of SOA record (cont)

- Expiry time
 → If the slave is unable to contact the master for this period of time, it will delete its copy of the zone data
- Negative / Minimum
 → Old software used this as a minimum value of the TTL
 → Now it is used for negative caching: indicates how long a cache may store the non-existence of a RR
- RIPE-203 has recommended values
 → http://www.ripe.net/ripe/docs/dns-soa.html

Format of NS records

$TTL 1d

@ IN SOA ns1.example.net brian.nsrc.org.
 2004030300 ; Serial
 8h ; Refresh
 1h ; Retry
 4w ; Expire
 1h) ; Negative

IN NS ns1.example.net.
IN NS ns2.example.net.
IN NS ns1.othernetwork.com.

- List all authoritative nameservers for the zone - master and slave(s)
- Must point to HOSTNAME not IP address

Format of other RRs

- IN A 1.2.3.4
- IN MX 10 mailhost.example.com.
 → The number is a "preference value". Mail is delivered to the lowest-number MX first
 → Must point to HOSTNAME not IP address
- IN CNAME host.example.com.
- IN PTR host.example.com.
- IN TXT "any text you like"

When you have added or changed a zone file:

- Check the serial number!
- named-checkzone example.com /etc/namedb/master/example.com
 → bind 9 feature
 → reports syntax errors; correct them!
- rndc reload
 → or: rndc reload example.com
- tail /var/log/messages

These checks are ESSENTIAL

- If you have an error in named.conf or a zone file, named will continue to run but not authoritative for the bad zone(s)
- You will be lame for the zone without realising it
- Slaves will not be able to contact the master
- Eventually (e.g. 4 weeks later) the slaves will expire the zone
- Your domain will stop working
Other checks you can do

- `dig +nored @x.x.x.x example.com. soa`
 - Check the AA flag
 - Check the master and all the slaves
 - Check the serial numbers match
- `dig @x.x.x.x example.com. axfr`
 - "Authority Transfer"
 - Requests a full copy of the zone contents over TCP, as slaves do to master
 - This will only work from IP addresses listed in the allow-transfer {...} section

So now you have working authoritative nameservers!

- But remember that none of this will work until you have delegation from the domain above
- That is, they put in NS records for your domain, pointing at your nameservers
- You have also put NS records within the zone file
- The two sets should match

TOP TEN ERRORS in authoritative nameservers

- All operators of auth nameservers should read RFC 1912
 - Common DNS Operational and Configuration Errors
- See also RFC 2182
 - Selection and Operation of Secondary DNS Servers

1. Serial number errors

- Forgot to increment serial number
- Incremented serial number, and then decremented it
- Used serial number greater than 2^{32}
- Impact:
 - Slaves do not update
 - Master and slaves have inconsistent data
 - Caches will sometimes get the new data and sometimes old - intermittent problem

2. Comments in zone files starting '#' instead of ';'

- Syntax error in zone file
- Master is no longer authoritative for the zone
- Slaves cannot check SOA
- Slaves eventually expire the zone, and your domain stops working entirely
- Use 'named-checkzone'
- Use 'tail /var/log/messages'

3. Other syntax errors in zone files

- e.g. omitting the preference value from MX records
- Same impact
4. Missing the trailing dot

; zone example.com.
@ IN MX 10 mailhost.example.com
becomes
@ IN MX 10 mailhost.example.com.example.com.

; zone 2.0.192.in-addr.arpa.
1 IN PTR host.example.com
becomes
1 IN PTR host.example.com.2.0.192.in-addr.arpa.

5. NS or MX records pointing to IP address

➢ They must point to hostnames, not IP addresses
➢ Unfortunately a few mail servers do accept IP addresses in MX records, so you may not see a problem with all remote sites

6. Slave cannot transfer zone from master

➢ Access restricted by allow-transfer {...}
and slave not listed
➢ Or IP filters not configured correctly
➢ Slave will be lame (non-authoritative)

7. Lame delegation

➢ You cannot just list any nameserver in NS records for your domain
➢ You must get agreement from the nameserver operator and they must configure it as a slave for your zone
➢ At best: slower DNS resolution and lack of resilience
➢ At worst: intermittent failures to resolve your domain

8. No delegation at all

➢ You can configure "example.com" on your nameservers but the outside world will not send requests to them until you have delegation
➢ The problem is hidden if your nameserver is acting both as your cache and as authoritative nameserver
➢ Your own clients can resolve www.example.com, but the rest of the world cannot

9. Out-of-date glue records

➢ See later
10. Not managing TTL correctly during changes

- e.g., if you have a 24 hour TTL, and you swing www.example.com to point to a new server, then there will be an extended period when some users hit one machine and some hit the other
- Follow the procedure:
 - Reduce TTL to 10 minutes
 - Wait at least 24 hours
 - Make the change
 - Put the TTL back to 24 hours

Final topics

- Reverse DNS
- How to delegate a subdomain

Example: 192.0.2.0/24

```
zone "2.0.192.in-addr.arpa" {
  type master;
  file "master/192.0.2";
  allow-transfer { ... };
};
```

```
/etc/namedb/master/192.0.2
@  IN  SOA  ....
IN  NS  ns0.example.com.
IN  NS  ns0.othernetwork.com.
1  IN  PTR  router-e0.example.com.
2  IN  PTR  ns0.example.com.
3  IN  PTR  mailhost.example.com.
4  IN  PTR  www.example.com.
; etc
```

How to manage reverse DNS

- If you have at least a /24 of address space then your provider will arrange delegation to your nameservers
- e.g., your netblock is 192.0.2.0/24
- Set up zone 2.0.192.in-addr.arpa.
- If you have more than a /24 then each /24 will be a separate zone
- If you are lucky enough to have a /16 then it will be a single zone
 → 172.16.0.0/16 is 16.172.in-addr.arpa.

How it works

- e.g., for 192.0.2.4, the remote host will lookup 4.2.0.192.in-addr.arpa. (PTR)
- The query follows the delegation tree as normal. If all is correct, it will reach your nameservers and you will reply
- Now you can see why the octets are reversed
 → The owner of a large netblock (192/8) can delegate reverse DNS in chunks of /16.
 The owner of a /16 can delegate chunks of /24
There is nothing special about reverse DNS

- You still need master and slave(s)
- It won't work unless you get delegation from above
- DO make sure that if you have PTR records for an IP address, that the hostname resolves back to the same IP address
 - Otherwise many sites on the Internet will believe you are spoofing reverse DNS and will refuse to let you connect

What if you have less than /24?

- Reverse DNS for the /24 has been delegated to your upstream provider
- Option 1: ask your provider to insert PTR records into their DNS servers
 - Problem: you have to ask them every time you want to make a change
- Option 2: follow the procedure in RFC2317
 - Uses a trick with CNAME to redirect PTR requests for your IPs to your nameservers

e.g. You own 192.0.2.64/29

```
; In the provider's 2.0.192.in-addr.arpa zone file
64    IN  CNAME  64.64/29.2.0.192.in-addr.arpa.
65    IN  CNAME  65.64/29.2.0.192.in-addr.arpa.
66    IN  CNAME  66.64/29.2.0.192.in-addr.arpa.
67    IN  CNAME  67.64/29.2.0.192.in-addr.arpa.
68    IN  CNAME  68.64/29.2.0.192.in-addr.arpa.
69    IN  CNAME  69.64/29.2.0.192.in-addr.arpa.
70    IN  CNAME  70.64/29.2.0.192.in-addr.arpa.
71    IN  CNAME  71.64/29.2.0.192.in-addr.arpa.
64/29 IN  NS  ns0.customer.com.
64/29 IN  NS  ns1.customer.com.

Set up zone "64/29.2.0.192.in-addr.arpa" on your nameservers
66 IN  PTR  mailhost.customer.com.
; etc
```

How do you delegate a subdomain?

- In principle straightforward: just insert NS records for the subdomain, pointing at someone else's servers
- If you are being careful, you should first *check* that those servers are authoritative for the subdomain
 - Using "dig" on all the servers
- If the subdomain is managed badly, it reflects badly on you!

Zone file for "example.com"

```
$TTL 1d
@ 1h IN SOA nsl.example.net brian.nscc.org ( 2004033000 ; Serial
2004033000 ; Serial
8h ; Refresh
1h ; Retry
4w ; Expire
1h ) ; Negative

IN NS nsl.example.net.
IN NS ns2.example.net.
IN NS nsl.thernetwork.com.

; My own zone data
IN MX 10 mailhost.example.net.
www IN A 212.74.512.80

; A delegated subdomain
subdom IN NS nsl.thernernet.net.
IN NS ns2.thernernet.net.
```

There is one problem here:

- NS records point to names, not IPs
- What if "example.com" is delegated to "ns.example.com"?
- Someone who is in the process of resolving (say) www.example.com has to first resolve ns.example.com
- But they cannot resolve ns.example.com without first resolving ns.example.com !!
In this case you need "glue"

- A "glue record" is an A record for the nameserver
- Example: consider the .com nameservers

 ; this is the com. zone

 example NS ns.example.com.
 NS ns.othernet.net.

 ns.example.com. A 192.0.2.1 ; GLUE RECORD

Example where a glue record IS needed

; My own zone data
IN MX 10 mailhost.example.net.
www IN A 212.74.112.80

; A delegated subdomain
subdom IN NS ns1.subdom ; needs it
subdom IN NS ns2.othernet.net. ; doesn’t
ns1.subdom IN A 192.0.2.4

Checking for glue records

- dig +noredc @a.gtld-servers.net.

www.as9105.net. a

- Look for A records in the "Additional" section whose TTL does not count down

 $ dig +noredc @a.gtld-servers.net. www.as9105.net. a

 ;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADD’L: 1
 ;; QUERY SECTION:
 ;; www.as9105.net., type = A, class = IN
 ;; AUTHORITY SECTION:
 as9105.net. 2D IN NS ns0.as9105.com.
 as9105.net. 2D IN NS ns0.tiscali.co.uk.
 ;; ADDITIONAL SECTION:
 ns0.as9105.com. 2D IN A 212.139.129.130

DNS: overall summary

- Distributed database of RRs
- Three roles: resolver, cache, authoritative
- Resolver statically configured with the nearest cache(s)
 - e.g. /etc/resolv.conf
- Caches statically configured with a list of root nameservers
 - zone type "hint", /etc/namedb/named.root

DNS: overall summary (cont)

- Root nameservers contain delegations (NS records) to gtd or country-level servers (com, uk etc)
- Further delegations to subdomains
- Cache finally locates an authoritative server containing the RRs we require
- Errors in delegation or in configuration of authoritative servers result in no answer or inconsistent answers