DNS Session 4: Delegation and reverse DNS

Joe Abley
AfNOG 2006 workshop
How do you delegate a subdomain?

• In principle straightforward: just insert NS records for the subdomain, pointing at someone else's servers

• If you are being careful, you should first check that those servers are authoritative for the subdomain
 − by using "dig +norec" on all the servers

• If the subdomain is managed badly, it reflects badly on you!
 − and you don't want to be fielding problem reports when the problem is somewhere else
Zone file for "example.com"

$TTL 1d
@ 1h IN SOA ns1.example.net. brian.nsrc.org. (2004030300 ; Serial 8h ; Refresh 1h ; Retry 4w ; Expire 1h) ; Negative

IN NS ns1.example.net.
IN NS ns2.example.net.
IN NS ns1.othernetnetwork.com.

; My own zone data
IN MX 10 mailhost.example.net.
www IN A 212.74.112.80

; A delegated subdomain
subdom IN NS ns1.othernet.net.
IN NS ns2.othernet.net.
There is one problem here:

• NS records point to names, not IPs
• What if zone "example.com" is delegated to "ns.example.com"?
• Someone who is in the process of resolving (say) www.example.com first has to resolve ns.example.com
• But in order to resolve ns.example.com they must first resolve ns.example.com !!
In this case you need "glue"

- A "glue record" is an A record for the nameserver, held higher in the tree
- Example: consider the .com nameservers, and a delegation for example.com

; this is the com. zone

```
example    NS  ns.example.com.
NS  ns.othernet.net.

ns.example.com.  A  192.0.2.1  ; GLUE RECORD
```
Don't put in glue records except where necessary

• In the previous example, "ns.othernet.net" is not a subdomain of "example.com". Therefore no glue is needed.

• Out-of-date glue records are a big source of problems
 - e.g. after renumbering a nameserver
 - Results in intermittent problems, difficult to debug
Example where a glue record IS needed

; My own zone data
 IN MX 10 mailhost.example.net.
www IN A 212.74.112.80

; A delegated subdomain
subdom IN NS ns1.subdom ; needs glue
 IN NS ns2.othernet.net. ; doesn't
ns1.subdom IN A 192.0.2.4
Checking for glue records

• dig +norec ... and repeat several times

• Look for A records in the "Additional" section whose TTL does not count down

```
$ dig +norec @a.gtld-servers.net. www.as9105.net. a
... 
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 1 
;; QUERY SECTION: 
;;    www.as9105.net, type = A, class = IN

;; AUTHORITY SECTION:
as9105.net.               172800  IN    NS        ns0.as9105.com.
as9105.net.               172800  IN    NS        ns0.tiscali.co.uk.

;; ADDITIONAL SECTION: 
ns0.as9105.com.           172800  IN    A         212.139.129.130
```
Practical

- Delegating a subdomain
Loose ends: how to manage reverse DNS

• If you have at least a /24 of address space then your provider will arrange delegation to your nameservers

• e.g. your netblock is 196.222.0.0/24

• Set up zone 0.222.196.in-addr.arpa.

• If you have more than a /24, then each /24 will be a separate zone

• If you are lucky enough to have a /16 then it will be a single zone
 - 196.222.0.0/16 is 222.196.in-addr.arpa.
Example: 196.222.0/24

```
zone "0.222.196.in-addr.arpa" {
    type master;
    file "master/196.222.0";
    allow-transfer { ... };
};
```

```
@ IN SOA ....
IN NS ns0.example.com.
IN NS ns0.othernetwork.com.
1 IN PTR router-e0.example.com.
2 IN PTR ns0.example.com.
3 IN PTR mailhost.example.com.
4 IN PTR www.example.com.
; etc
```
How it works

• e.g. for 196.222.0.4, the remote host will lookup 4.0.222.196.in-addr.arpa. (PTR)

• The query follows the delegation tree as normal. If all is correct, it will reach your nameservers and you will reply

• Now you can see why the octets are reversed
 - The owner of a large netblock (e.g. 192/8) can delegate reverse DNS in chunks of /16. The owner of a /16 can delegate chunks of /24
There is nothing special about reverse DNS

- You still need master and slave(s)
- It won't work unless you get delegation from above
- However, DO make sure that if you have a PTR record for an IP address, that the hostname resolves back to the same IP address
 - Otherwise, many sites on the Internet will think you are spoofing reverse DNS and will refuse to let you connect
What if you have less than /24?

• Reverse DNS for the /24 has been delegated to your upstream provider

• Option 1: ask your provider to insert PTR records into their DNS servers
 − Problem: you have to ask them every time you want to make a change

• Option 2: follow the procedure in RFC 2317
 − Uses a trick with CNAME to redirect PTR requests for your IPs to your nameservers
e.g. you own 192.0.2.64/29

In the provider's 2.0.192.in-addr.arpa zone file

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>IN</td>
<td>CNAME</td>
<td>64.64/29.2.0.192.in-addr.arpa.</td>
</tr>
<tr>
<td>65</td>
<td>IN</td>
<td>CNAME</td>
<td>65.64/29.2.0.192.in-addr.arpa.</td>
</tr>
<tr>
<td>66</td>
<td>IN</td>
<td>CNAME</td>
<td>66.64/29.2.0.192.in-addr.arpa.</td>
</tr>
<tr>
<td>67</td>
<td>IN</td>
<td>CNAME</td>
<td>67.64/29.2.0.192.in-addr.arpa.</td>
</tr>
<tr>
<td>68</td>
<td>IN</td>
<td>CNAME</td>
<td>68.64/29.2.0.192.in-addr.arpa.</td>
</tr>
<tr>
<td>69</td>
<td>IN</td>
<td>CNAME</td>
<td>69.64/29.2.0.192.in-addr.arpa.</td>
</tr>
<tr>
<td>70</td>
<td>IN</td>
<td>CNAME</td>
<td>70.64/29.2.0.192.in-addr.arpa.</td>
</tr>
<tr>
<td>71</td>
<td>IN</td>
<td>CNAME</td>
<td>71.64/29.2.0.192.in-addr.arpa.</td>
</tr>
<tr>
<td>64/29</td>
<td>IN</td>
<td>NS</td>
<td>ns0.customer.com.</td>
</tr>
<tr>
<td>64/29</td>
<td>IN</td>
<td>NS</td>
<td>ns1.customer.com.</td>
</tr>
</tbody>
</table>

Set up zone "64/29.2.0.192.in-addr.arpa" on your nameservers

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>IN</td>
<td>PTR</td>
</tr>
<tr>
<td>; etc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DNS: Summary

• Distributed database of Resource Records
 - e.g. A, MX, PTR, ...
• Three roles: resolver, cache, authoritative
• Resolver statically configured with nearest caches
 - e.g. /etc/resolv.conf
• Caches are seeded with a list of root servers
 - zone type "hint", /etc/namedb/named.root
• Authoritative servers contain RRs for certain zones (part of the DNS tree)
 - replicated for resilience and load-sharing
DNS: Summary (cont)

- Root nameservers contain delegations (NS records) to gTLD or country-level servers (com, uk etc)
- These contain further delegations to subdomains
- Cache finally locates an authoritative server containing the RRs requested
- Errors in delegation or in configuration of authoritative servers result in no answer or inconsistent answers
Further reading

• "DNS and BIND" (O'Reilly)
• BIND 9 Administrator Reference Manual
 − /usr/share/doc/bind9/arm/Bv9ARM.html
• http://www.isc.org/sw/bind/
 − includes FAQ, security alerts
• RFC 1912, RFC 2182
 − http://www.rfc-editor.org/