BGP Multihoming Techniques

Philip Smith <pfs@cisco.com>

PacNOG 2 Workshop
Apia, Samoa
18-24 June 2006
BGP Multihoming Techniques

• Why Multihome?
• Definition & Options
• Preparing the Network
• Basic Multihoming
• Service Provider Multihoming
• Using Communities
Why Multihome?

It’s all about redundancy, diversity & reliability
Why Multihome?

• Redundancy

One connection to internet means the network is dependent on:

- Local router (configuration, software, hardware)
- WAN media (physical failure, carrier failure)
- Upstream Service Provider (configuration, software, hardware)
Why Multihome?

• Reliability

 Business critical applications demand continuous availability
 Lack of redundancy implies lack of reliability implies loss of revenue
Why Multihome?

• Supplier Diversity

Many businesses demand supplier diversity as a matter of course

Internet connection from two or more suppliers

 With two or more diverse WAN paths
 With two or more exit points
 With two or more international connections

 Two of everything
Why Multihome?

• Not really a reason, but oft quoted...

• Leverage:

 Playing one ISP off against the other for:

 Service Quality

 Service Offerings

 Availability
Why Multihome?

• Summary:

Multihoming is easy to demand as requirement for any service provider or end-site network

But what does it really mean:

 In real life?
 For the network?
 For the Internet?

And how do we do it?
BGP Multihoming Techniques

• Why Multihome?
• Definition & Options
• Preparing the Network
• Basic Multihoming
• Service Provider Multihoming
• Using Communities
Multihoming: Definitions & Options

What does it mean, what do we need, and how do we do it?
Multihoming Definition

- More than one link external to the local network
 - two or more links to the same ISP
 - two or more links to different ISPs
- Usually **two** external facing routers
 - one router gives link and provider redundancy only
AS Numbers

- An Autonomous System Number is required by BGP
- Obtained from upstream ISP or Regional Registry (RIR)
 AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC
- Necessary when you have links to more than one ISP or to an exchange point
- 16 bit integer, ranging from 1 to 65534
 Zero and 65535 are reserved
 64512 through 65534 are called Private ASNs
Applications

- An ISP with customers multihomed on their backbone (RFC2270)
- A corporate network with several regions but connections to the Internet only in the core
- Within a BGP Confederation
Private-AS – Removal

• Private ASNs MUST be removed from all prefixes announced to the public Internet
 Include configuration to remove private ASNs in the eBGP template

• As with RFC1918 address space, private ASNs are intended for internal use
 They should not be leaked to the public Internet

• Cisco IOS
 `neighbor x.x.x.x remove-private-AS`
Configuring Policy

• Three BASIC Principles for IOS configuration examples throughout presentation:

 - prefix-lists to filter prefixes
 - filter-lists to filter ASNs
 - route-maps to apply policy

• Route-maps can be used for filtering, but this is more “advanced” configuration
Policy Tools

- Local preference
 outbound traffic flows
- Metric (MED)
 inbound traffic flows (local scope)
- AS-PATH prepend
 inbound traffic flows (Internet scope)
- Communities
 specific inter-provider peering
Originating Prefixes: Assumptions

- **MUST** announce assigned address block to Internet
- **MAY** also announce subprefixes – reachability is not guaranteed
- Current RIR minimum allocation is /21
 - Several ISPs filter RIR blocks on this boundary
 - Several ISPs filter the rest of address space according to the IANA assignments
 - This activity is called “Net Police” by some
Originating Prefixes

- Some ISPs publish their minimum allocation sizes per /8 address block
 - AfriNIC: www.afrinic.net/docs/policies/afpol-v4200407-000.htm
 - APNIC: www.apnic.net/db/min-alloc.html
 - ARIN: www.arin.net/reference/ip_blocks.html
 - LACNIC: lacnic.net/en/registro/index.html
 - RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html

 Note that AfriNIC only publishes its current minimum allocation size, not the allocation size for its address blocks.

- IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:
 www.iana.org/assignments/ipv4-address-space

- Several ISPs use this published information to filter prefixes on:
 - What should be routed (from IANA)
 - The minimum allocation size from the RIRs
“Net Police” prefix list issues

• meant to “punish” ISPs who pollute the routing table with specifics rather than announcing aggregates
• impacts legitimate multihoming especially at the Internet’s edge
• impacts regions where domestic backbone is unavailable or costs $$$ compared with international bandwidth
• hard to maintain – requires updating when RIRs start allocating from new address blocks
• don’t do it unless consequences understood and you are prepared to keep the list current

 Consider using the Project Cymru bogon BGP feed
 http://www.cymru.com/BGP/bogon-rs.html
Multihoming Scenarios

- Stub network
- Multi-homed stub network
- Multi-homed network
- Load-balancing
Stub Network

- No need for BGP
- Point static default to upstream ISP
- Router will load share on the two parallel circuits
- Upstream ISP advertises stub network
- Policy confined within upstream ISP’s policy
Multi-homed Stub Network

- Use BGP (not IGP or static) to loadshare
- Use private AS (ASN > 64511)
- Upstream ISP advertises stub network
- Policy confined within upstream ISP’s policy
Multi-Homed Network

- Many situations possible
 multiple sessions to same ISP
 secondary for backup only
 load-share between primary and secondary
 selectively use different ISPs
Multiple Sessions to an ISP
– Example One

- Use eBGP multihop
 eBGP to loopback addresses
 eBGP prefixes learned with loopback address as next hop

- Cisco IOS
 router bgp 65534
 neighbor 1.1.1.1 remote-as 200
 neighbor 1.1.1.1 ebgp-multihop 2

 ip route 1.1.1.1 255.255.255.255 serial 1/0
 ip route 1.1.1.1 255.255.255.255 serial 1/1
 ip route 1.1.1.1 255.255.255.255 serial 1/2
Multiple Sessions to an ISP – Example One

• One eBGP-multihop gotcha:

 R1 and R3 are eBGP peers that are loopback peering
 Configured with:
 `neighbor x.x.x.x ebgp-multihop 2`
 If the R1 to R3 link goes down the session could establish via R2
Multiple Sessions to an ISP – Example One

• Try and avoid use of ebgp-multihop unless:
 It’s absolutely necessary – or –
 Loadsharing across multiple links

• Many ISPs discourage its use, for example:

We will run eBGP multihop, but do not support it as a standard offering because customers generally have a hard time managing it due to:
• routing loops
• failure to realise that BGP session stability problems are usually due connectivity problems between their CPE and their BGP speaker
Multiple Sessions to an ISP – Example Two

- BGP multi-path
- Limit to number of parallel paths depending on implementation
- For this example, three BGP sessions required
- Cisco IOS Configuration

  ```
  router bgp 201
  neighbor 1.1.2.1 remote-as 200
  neighbor 1.1.2.5 remote-as 200
  neighbor 1.1.2.9 remote-as 200
  maximum-paths 3
  ```
Multiple Sessions to an ISP

- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing
 - Point default towards one ISP
 - Learn selected prefixes from second ISP
 - Modify the number of prefixes learnt to achieve acceptable load sharing
- No magic solution
BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- Service Provider Multihoming
- Using Communities
Preparing the Network

Putting our own house in order first…
Preventing the Network

- We will deploy BGP across the network before we try and multihome
- BGP will be used therefore an ASN is required
- If multihoming to different ISPs, public ASN needed:
 - Either go to upstream ISP who is a registry member, or
 - Apply to the RIR yourself for a one off assignment, or
 - Ask an ISP who is a registry member, or
 - Join the RIR and get your own IP address allocation too (this option strongly recommended)!
Preparing the Network

• The network is not running any BGP at the moment
 single statically routed connection to upstream ISP

• The network is not running any IGP at all
 Static default and routes through the network to do “routing”
Preparing the Network
IGP

- Decide on IGP: OSPF or ISIS 😊
- Assign loopback interfaces and /32 addresses to each router which will run the IGP
 Loopback is used for OSPF and BGP router id anchor
 Used for iBGP and route origination
- Deploy IGP (e.g. OSPF)
 IGP can be deployed with NO IMPACT on the existing static routing
 OSPF distance is 110, static distance is 1
 Smallest distance wins
Preparing the Network
IGP (cont)

- Be prudent deploying IGP – keep the Link State Database Lean!

 Router loopbacks go in IGP

 WAN point to point links go in IGP

 (In fact, any link where IGP dynamic routing will be run should go into IGP)

 Summarise on area/level boundaries (if possible) – i.e. think about your IGP address plan
• Routes which don’t go into the IGP include:

 Dynamic assignment pools (DSL/Cable/Dial)

 Customer point to point link addressing

 (using next-hop-self in iBGP ensures that these do NOT need to be in IGP)

 Static/Hosting LANs

 Customer assigned address space

 Anything else not listed in the previous slide
Preparing the Network
Introduce OSPF

```bash
interface loopback 0
   ip address 121.10.255.1 255.255.255.255
!
interface Ethernet 0/0
   ip address 121.10.2.1 255.255.255.240
!
interface serial 0/0
   ip address 121.10.0.1 255.255.255.252
!
interface serial 0/1
   ip address 121.10.0.5 255.255.255.252
!
routing ospf 100
   network 121.10.255.1 0.0.0.0 area 0
   network 121.10.2.0 0.0.0.15 area 0
   passive-interface default
   no passive-interface Ethernet 0/0
!
ip route 121.10.24.0 255.255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
```

Add loopback configuration

Customer connections
Preparing the Network
iBGP

• Second step is to configure the local network to use iBGP
• iBGP can run on
 all routers, or
 a subset of routers, or
 just on the upstream edge
• iBGP must run on all routers which are in the transit path between external connections
Preparing the Network
iBGP (Transit Path)

- *iBGP must run on all routers which are in the transit path between external connections*
 - Routers C, E and F are not in the transit path
 - Static routes or IGP will suffice
 - Router D is in the transit path
 - Will need to be in iBGP mesh, otherwise routing loops will result
Preparing the Network Layers

- Typical SP networks have three layers:
 - Core – the backbone, usually the transit path
 - Distribution – the middle, PoP aggregation layer
 - Aggregation – the edge, the devices connecting customers
Preparing the Network Aggregation Layer

- **iBGP is optional**

 Many ISPs run iBGP here, either partial routing (more common) or full routing (less common)

 Full routing is not needed unless customers want full table

 Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing

 Communities and peer-groups make this administratively easy

- **Many aggregation devices can’t run iBGP**

 Static routes from distribution devices for address pools

 IGP for best exit
Preparing the Network Distribution Layer

• **Usually runs iBGP**
 Partial or full routing (as with aggregation layer)

• **But does not have to run iBGP**
 IGP is then used to carry customer prefixes (does not scale)
 IGP is used to determine nearest exit

• **Networks which plan to grow large should deploy iBGP from day one**
 Migration at a later date is extra work
 No extra overhead in deploying iBGP, indeed IGP benefits
Preprocessing the Network
Core Layer

- Core of network is usually the transit path
- iBGP necessary between core devices
 - Full routes or partial routes:
 - Transit ISPs carry full routes in core
 - Edge ISPs carry partial routes only
- Core layer includes AS border routers
Preparing the Network
iBGP Implementation

Decide on:

• Best iBGP policy
 Will it be full routes everywhere, or partial, or some mix?

• iBGP scaling technique
 Community policy?
 Route-reflectors?
 Techniques such as peer groups and peer templates?
Preparing the Network
iBGP Implementation

• Then deploy iBGP:

 Step 1: Introduce iBGP mesh on chosen routers
 make sure that iBGP distance is greater than IGP distance (it usually is)

 Step 2: Install “customer” prefixes into iBGP
 Check! Does the network still work?

 Step 3: Carefully remove the static routing for the prefixes now in IGP and iBGP
 Check! Does the network still work?

 Step 4: Deployment of eBGP follows
Preparing the Network
iBGP Implementation

Install “customer” prefixes into iBGP?

- Customer assigned address space
 - Network statement/static route combination
 - Use unique community to identify customer assignments
- Customer facing point-to-point links
 - Redistribute connected through filters which only permit point-to-point link addresses to enter iBGP
 - Use a unique community to identify point-to-point link addresses (these are only required for your monitoring system)
- Dynamic assignment pools & local LANs
 - Simple network statement will do this
 - Use unique community to identify these networks
Preparing the Network
iBGP Implementation

Carefully remove static routes?

• Work on one router at a time:

 Check that static route for a particular destination is also learned either by IGP or by iBGP

 If so, remove it

 If not, establish why and fix the problem

 (Remember to look in the RIB, not the FIB!)

• Then the next router, until the whole PoP is done

• Then the next PoP, and so on until the network is now dependent on the IGP and iBGP you have deployed
Preparing the Network Completion

- Previous steps are NOT flag day steps

 Each can be carried out during different maintenance periods, for example:

 Step One on Week One

 Step Two on Week Two

 Step Three on Week Three

 And so on

 And with proper planning will have NO customer visible impact at all
Preparing the Network Configuration – Steps 1 & 2

```
! router bgp 100
    redistribute connected subnets route-map point-to-point
neighbor 121.10.1.2 remote-as 100
neighbor 121.10.1.2 next-hop-self
...
    network 121.10.24.0 mask 255.255.252.0
    network 121.10.28.0 mask 255.255.254.0
distance bgp 200 200 200
!
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
!
route-map point-to-point permit 5
    match ip address 1
    set community 100:1
!
access-list 1 permit 121.10.0.0 0.0.255.255
```

Add BGP and related configuration in red
Preparing the Network Configuration – Step 3

```
router ospf 100
    network 121.10.255.1 0.0.0.0 area 0
    network 121.10.2.0 0.0.0.15 area 0
    passive-interface default
    no passive-interface ethernet 0/0
    
router bgp 100
    redistribute connected route-map point-to-point
    neighbor 121.10.1.2 remote-as 100
    neighbor 121.10.1.2 next-hop-self
    
    network 121.10.24.0 mask 255.255.252.0
    network 121.10.28.0 mask 255.255.254.0
    distance bgp 200 200 200  ! BGP distance modified from default
    
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
    
    ...etc...
```
Preparing the Network
Configuration Summary

- IGP essential networks are in IGP
- Customer networks are now in iBGP
 iBGP deployed over the backbone
 Full or Partial or Upstream Edge only
- BGP distance is greater than any IGP
- Now ready to deploy eBGP
BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- “BGP Traffic Engineering”
- Using Communities
Basic Multihoming

Learning to walk before we try running
Basic Multihoming

- No frills multihoming
- Will look at two cases:
 - Multihoming with the same ISP
 - Multihoming to different ISPs
- Will keep the examples easy

 Understanding easy concepts will make the more complex scenarios easier to comprehend

All assume that the site multihoming has a /19 address block
Basic Multihoming

• This type is most commonplace at the edge of the Internet
 Networks here are usually concerned with inbound traffic flows
 Outbound traffic flows being “nearest exit” is usually sufficient

• Can apply to the leaf ISP as well as Enterprise networks
Basic Multihoming

Multihoming to the Same ISP
Basic Multihoming: Multihoming to the same ISP

• Use BGP for this type of multihoming
 use a private AS (ASN > 64511)
 There is no need or justification for a public ASN
 Making the nets of the end-site visible gives no useful information to the Internet

• Upstream ISP proxy aggregates
 in other words, announces only your address block to the Internet from their AS (as would be done if you had one statically routed connection)
Two links to the same ISP

One link primary, the other link backup only
Two links to the same ISP (one as backup only)

- Applies when end-site has bought a large primary WAN link to their upstream a small secondary WAN link as the backup

 For example, primary path might be an E1, backup might be 64kbps
Two links to the same ISP (one as backup only)

- Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement
Two links to the same ISP (one as backup only)

• Announce /19 aggregate on each link

 primary link:
 Outbound – announce /19 unaltered
 Inbound – receive default route

 backup link:
 Outbound – announce /19 with increased metric
 Inbound – received default, and reduce local preference

• When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity
Two links to the same ISP (one as backup only)

- **Router A Configuration**

  ```
  router bgp 65534
  
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 description RouterC
  neighbor 122.102.10.2 prefix-list aggregate out
  neighbor 122.102.10.2 prefix-list default in
  
  ip prefix-list aggregate permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP (one as backup only)

- **Router B Configuration**

  ```
  router bgp 65534
  
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.6 remote-as 100
  neighbor 122.102.10.6 description RouterD
  neighbor 122.102.10.6 prefix-list aggregate out
  neighbor 122.102.10.6 route-map routerD-out out
  neighbor 122.102.10.6 prefix-list default in
  neighbor 122.102.10.6 route-map routerD-in in
  
  ..next slide
  ```
Two links to the same ISP (one as backup only)

```plaintext
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerD-out permit 10
    match ip address prefix-list aggregate
    set metric 10
route-map routerD-out permit 20
!
route-map routerD-in permit 10
    set local-preference 90
!
```
Two links to the same ISP (one as backup only)

- **Router C Configuration (main link)**

  ```
  router bgp 100
  neighbor 122.102.10.1 remote-as 65534
  neighbor 122.102.10.1 default-originate
  neighbor 122.102.10.1 prefix-list Customer in
  neighbor 122.102.10.1 prefix-list default out
  
  ip prefix-list Customer permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP (one as backup only)

- **Router D Configuration (backup link)**

  ```
  router bgp 100
  
  neighbor 122.102.10.5 remote-as 65534
  neighbor 122.102.10.5 default-originate
  neighbor 122.102.10.5 prefix-list Customer in
  neighbor 122.102.10.5 prefix-list default out

  !
  ip prefix-list Customer permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP (one as backup only)

- **Router E Configuration**

  ```
  router bgp 100
  neighbor 122.102.10.17 remote-as 110
  neighbor 122.102.10.17 remove-private-AS
  neighbor 122.102.10.17 prefix-list Customer out 
  
  ip prefix-list Customer permit 121.10.0.0/19
  
  ```

- **Router E removes the private AS and customer’s subprefixes from external announcements**

- **Private AS still visible inside AS100**
Two links to the same ISP

With Loadsharing
Loadsharing to the same ISP

• More common case

• End sites tend not to buy circuits and leave them idle, only used for backup as in previous example

• This example assumes equal capacity circuits
 Unequal capacity circuits requires more refinement – see later
Loadsharing to the same ISP

- Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement
Loadsharing to the same ISP

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link

 * basic inbound loadsharing
 * assumes equal circuit capacity and even spread of traffic across address block
- Vary the split until “perfect” loadsharing achieved
- Accept the default from upstream

 * basic outbound loadsharing by nearest exit
 * okay in first approx as most ISP and end-site traffic is inbound
Loadsharing to the same ISP

- **Router A Configuration**

  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.0.0 mask 255.255.240.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 prefix-list routerC out
  neighbor 122.102.10.2 prefix-list default in

  ip prefix-list default permit 0.0.0.0/0
  ip prefix-list routerC permit 121.10.0.0/20
  ip prefix-list routerC permit 121.10.0.0/19

  ip route 121.10.0.0 255.255.240.0 null0
  ip route 121.10.0.0 255.255.224.0 null0
  ```

 Router B configuration is similar but with the other /20
Loadsharing to the same ISP

• **Router C Configuration**

```plaintext
router bgp 100
neighbor 122.102.10.1 remote-as 65534
neighbor 122.102.10.1 default-originate
neighbor 122.102.10.1 prefix-list Customer in
neighbor 122.102.10.1 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

• **Router C only allows in /19 and /20 prefixes from customer block**

• **Router D configuration is identical**
Loadsharing to the same ISP

- Loadsharing configuration is only on customer router
- Upstream ISP has to
 - remove customer subprefixes from external announcements
 - remove private AS from external announcements
- Could also use BGP communities
Two links to the same ISP

Multiple Dualhomed Customers (RFC2270)
Multiple Dualhommed Customers (RFC2270)

- Unusual for an ISP just to have one dualhommed customer
 Valid/valuable service offering for an ISP with multiple PoPs
 Better for ISP than having customer multihome with another provider!
- Look at scaling the configuration
 ⇒ Simplifying the configuration
 Using templates, peer-groups, etc
 Every customer has the same configuration (basically)
Multiple Dualhomed Customers (RFC2270)

- Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement
Multiple Dualhomed Customers

- Customer announcements as per previous example
- Use the same private AS for each customer
 documented in RFC2270
 address space is not overlapping
 each customer hears default only
- Router An and Bn configuration same as Router A and B previously
Multiple Dualhomed Customers

- Router A1 Configuration

  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.0.0 mask 255.255.240.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 prefix-list routerC out
  neighbor 122.102.10.2 prefix-list default in

  ip prefix-list default permit 0.0.0.0/0
  ip prefix-list routerC permit 121.10.0.0/20
  ip prefix-list routerC permit 121.10.0.0/19

  ip route 121.10.0.0 255.255.240.0 null0
  ip route 121.10.0.0 255.255.224.0 null0
  ```

 Router B1 configuration is similar but for the other /20
Multiple Dualhommed Customers

- **Router C Configuration**

  ```
  router bgp 100
  neighbor bgp-customers peer-group
  neighbor bgp-customers remote-as 65534
  neighbor bgp-customers default-originate
  neighbor bgp-customers prefix-list default out
  neighbor 122.102.10.1 peer-group bgp-customers
  neighbor 122.102.10.1 description Customer One
  neighbor 122.102.10.1 prefix-list Customer1 in
  neighbor 122.102.10.9 peer-group bgp-customers
  neighbor 122.102.10.9 description Customer Two
  neighbor 122.102.10.9 prefix-list Customer2 in
  ```
Multiple Dualhomed Customers

neighbor 122.102.10.17 peer-group bgp-customers
neighbor 122.102.10.17 description Customer Three
neighbor 122.102.10.17 prefix-list Customer3 in
!
ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0

• Router C only allows in /19 and /20 prefixes from customer block

• Router D configuration is almost identical
Multiple Dualhomed Customers

• **Router E Configuration**

 assumes customer address space is not part of upstream’s address block

  ```bash
  router bgp 100
  neighbor 122.102.10.17 remote-as 110
  neighbor 122.102.10.17 remove-private-AS
  neighbor 122.102.10.17 prefix-list Customers out
  
  ip prefix-list Customers permit 121.10.0.0/19
  ip prefix-list Customers permit 121.16.64.0/19
  ip prefix-list Customers permit 121.14.192.0/19
  
  • Private AS still visible inside AS100
Multiple Dualhomed Customers

- If customers’ prefixes come from ISP’s address block
  
do NOT announce them to the Internet
  
announce ISP aggregate only

- Router E configuration:
  
  ```
 router bgp 100
 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 prefix-list my-aggregate out
 !
 ip prefix-list my-aggregate permit 121.8.0.0/13
  ```
Basic Multihoming

Multihoming to different ISPs
Two links to different ISPs

• Use a Public AS
  Or use private AS if agreed with the other ISP
  But some people don’t like the “inconsistent-AS” which results from use of a private-AS

• Address space comes from
  both upstreams or
  Regional Internet Registry

• Configuration concepts very similar
Inconsistent-AS?

- Viewing the prefixes originated by AS65534 in the Internet shows they appear to be originated by both AS210 and AS200
  
  This is NOT bad
  
  Nor is it illegal

- Cisco IOS command is
  
  `show ip bgp inconsistent-as`
Two links to different ISPs

One link primary, the other link backup only
Two links to different ISPs (one as backup only)

• Announce /19 aggregate on each link
  primary link makes standard announcement
  backup link lengthens the AS PATH by using AS PATH prepend

• When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity
Two links to different ISPs (one as backup only)

AS 100

Announce /19 block

Internet

AS 120

Announce /19 block with longer AS PATH

AS 130
Two links to different ISPs (one as backup only)

- **Router A Configuration**

  ```plaintext
 router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 100
 neighbor 122.102.10.1 prefix-list aggregate out
 neighbor 122.102.10.1 prefix-list default in

 ip prefix-list aggregate permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0
  ```
Two links to different ISPs (one as backup only)

- **Router B Configuration**
  
  ```plaintext
 router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 neighbor 120.1.5.1 remote-as 120
 neighbor 120.1.5.1 prefix-list aggregate out
 neighbor 120.1.5.1 route-map routerD-out out
 neighbor 120.1.5.1 prefix-list default in
 neighbor 120.1.5.1 route-map routerD-in in

 !
 ip prefix-list aggregate permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0

 !
 route-map routerD-out permit 10
 set as-path prepend 130 130 130

 !
 route-map routerD-in permit 10
 set local-preference 80
  ```
Two links to different ISPs (one as backup only)

- Not a common situation as most sites tend to prefer using whatever capacity they have
- But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction
Two links to different ISPs

With Loadsharing
Two links to different ISPs (with loadsharing)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
  - basic inbound loadsharing
- When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity
Two links to different ISPs (with loadsharing)

Announce first /20 and /19 block
Announce second /20 and /19 block
Two links to different ISPs (with loadsharing)

• Router A Configuration

  router bgp 130
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.0.0 mask 255.255.240.0
  neighbor 122.102.10.1 remote-as 100
  neighbor 122.102.10.1 prefix-list firstblock out
  neighbor 122.102.10.1 prefix-list default in

  !
  ip prefix-list default permit 0.0.0.0/0

  !
  ip prefix-list firstblock permit 121.10.0.0/20
  ip prefix-list firstblock permit 121.10.0.0/19
Two links to different ISPs (with loadsharing)

- **Router B Configuration**
  
  ```
 router bgp 130

 network 121.10.0.0 mask 255.255.224.0
 network 121.10.16.0 mask 255.255.240.0
 neighbor 120.1.5.1 remote-as 120
 neighbor 120.1.5.1 prefix-list secondblock out
 neighbor 120.1.5.1 prefix-list default in

 !
 ip prefix-list default permit 0.0.0.0/0

 !
 ip prefix-list secondblock permit 121.10.16.0/20
 ip prefix-list secondblock permit 121.10.0.0/19
  ```
Two links to different ISPs (with loadsharing)

• Loadsharing in this case is very basic
• But shows the first steps in designing a load sharing solution

  Start with a simple concept
  And build on it…!
Two links to different ISPs

More Controlled Loadsharing
Loadsharing with different ISPs

• Announce /19 aggregate on each link
  On first link, announce /19 as normal
  On second link, announce /19 with longer AS PATH, and announce one /20 subprefix
    controls loadsharing between upstreams and the Internet

• Vary the subprefix size and AS PATH length until “perfect” loadsharing achieved

• Still require redundancy!
Loadsharing with different ISPs

- AS 100
- AS 120
- AS 130

Announce /19 block

Announce /20 subprefix, and /19 block with longer AS path
Loadsharing with different ISPs

**Router A Configuration**

```plaintext
router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 100
 neighbor 122.102.10.1 prefix-list default in
 neighbor 122.102.10.1 prefix-list aggregate out

ip prefix-list aggregate permit 121.10.0.0/19
```
Loadsharing with different ISPs

• **Router B Configuration**

  ```
 router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.16.0 mask 255.255.240.0
 neighbor 120.1.5.1 remote-as 120
 neighbor 120.1.5.1 prefix-list default in
 neighbor 120.1.5.1 prefix-list subblocks out
 neighbor 120.1.5.1 route-map routerD out

 route-map routerD permit 10
 match ip address prefix-list aggregate
 set as-path prepend 130 130
 route-map routerD permit 20

 ip prefix-list subblocks permit 121.10.0.0/19 le 20
 ip prefix-list aggregate permit 121.10.0.0/19
  ```
Loadsharing with different ISPs

• This example is more commonplace

• Shows how ISPs and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs

• Notice that the /19 aggregate block is ALWAYS announced
BGP Multihoming Techniques

- Why Multihome?
- Definition & Options
- Preparing the Network
- Basic Multihoming
- “BGP Traffic Engineering”
- Using Communities
Service Provider Multihoming

BGP Traffic Engineering
Service Provider Multihoming

• Previous examples dealt with loadsharing inbound traffic
  Of primary concern at Internet edge
  What about outbound traffic?

• Transit ISPs strive to balance traffic flows in both directions
  Balance link utilisation
  Try and keep most traffic flows symmetric
  Some edge ISPs try and do this too

• The original “Traffic Engineering”
• Balancing outbound traffic requires inbound routing information

  Common solution is “full routing table”

Rarely necessary

  Why use the “routing mallet” to try solve loadsharing problems?

  “Keep It Simple” is often easier (and $$$ cheaper) than carrying N-copies of the full routing table
Service Provider Multihoming
MYTHS!!

• Common MYTHS
  • 1: You need the full routing table to multihome
    People who sell router memory would like you to believe this
    Only true if you are a transit provider
    Full routing table can be a significant hindrance to multihoming
  • 2: You need a BIG router to multihome
    Router size is related to data rates, not running BGP
    In reality, to multihome, your router needs to:
    Have two interfaces,
    Be able to talk BGP to at least two peers,
    Be able to handle BGP attributes,
    Handle at least one prefix
  • 3: BGP is complex
    In the wrong hands, yes it can be! Keep it Simple!
Service Provider Multihoming: Some Strategies

• Take the prefixes you need to aid traffic engineering
  Look at NetFlow data for popular sites

• Prefixes originated by your immediate neighbours and their neighbours will do more to aid load balancing than prefixes from ASNs many hops away
  Concentrate on local destinations

• Use default routing as much as possible
  Or use the full routing table with care
Service Provider Multihoming

• Examples
  One upstream, one local peer
  One upstream, local exchange point
  Two upstreams, one local peer
  Tier-1 and regional upstreams, with local peers

• Require BGP and a public ASN

• Examples assume that the local network has their own /19 address block
Service Provider Multihoming

One upstream, one local peer
One Upstream, One Local Peer

• Very common situation in many regions of the Internet
• Connect to upstream transit provider to see the “Internet”
• Connect to the local competition so that local traffic stays local
  Saves spending valuable $ on upstream transit costs for local traffic
One Upstream, One Local Peer

Upstream ISP
AS130

Local Peer
AS120

AS 110
One Upstream, One Local Peer

- Announce /19 aggregate on each link
- Accept default route only from upstream
  Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes from local peer
One Upstream, One Local Peer

**Router A Configuration**

```
router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.2 remote-as 120
 neighbor 122.102.10.2 prefix-list my-block out
 neighbor 122.102.10.2 prefix-list AS120-peer in

! ip prefix-list AS120-peer permit 122.5.16.0/19
ip prefix-list AS120-peer permit 121.240.0.0/20
ip prefix-list my-block permit 121.10.0.0/19
!
ip route 121.10.0.0 255.255.224.0 null0
```
One Upstream, One Local Peer

• **Router A – Alternative Configuration**

```plaintext
router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.2 remote-as 120
 neighbor 122.102.10.2 prefix-list my-block out
 neighbor 122.102.10.2 filter-list 10 in
!
ip as-path access-list 10 permit ^120_\]+$
!
ip prefix-list my-block permit 121.10.0.0/19
!
ip route 121.10.0.0 255.255.224.0 null0
```

AS Path filters – more “trusting”
One Upstream, One Local Peer

**Router C Configuration**

```plaintext
router bgp 110

 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 130
 neighbor 122.102.10.1 prefix-list default in
 neighbor 122.102.10.1 prefix-list my-block out

! ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
```
One Upstream, One Local Peer

- Two configurations possible for Router A
  - Filter-lists assume peer knows what they are doing
  - Prefix-list higher maintenance, but safer
  - Some ISPs use both
- Local traffic goes to and from local peer, everything else goes to upstream
Aside: Configuration Recommendation

• Private Peers
  The peering ISPs exchange prefixes they originate
  Sometimes they exchange prefixes from neighbouring ASNs too

• Be aware that the private peer eBGP router should carry only the prefixes you want the private peer to receive
  Otherwise they could point a default route to you and unintentionally transit your backbone
Service Provider Multihoming

One Upstream, Local Exchange Point
One Upstream, Local Exchange Point

- Very common situation in many regions of the Internet
- Connect to upstream transit provider to see the “Internet”
- Connect to the local Internet Exchange Point so that local traffic stays local
  
  Saves spending valuable $ on upstream transit costs for local traffic
One Upstream, Local Exchange Point

Upstream ISP

AS 130

AS 110
One Upstream, Local Exchange Point

- Announce /19 aggregate to every neighbouring AS
- Accept default route only from upstream
  - Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes originated by IXP peers
• **Router A Configuration**

```plaintext
interface fastethernet 0/0
 description Exchange Point LAN
 ip address 120.5.10.1 mask 255.255.255.224
 ip verify unicast reverse-path

router bgp 110
 neighbor ixp-peers peer-group
 neighbor ixp-peers prefix-list my-block out
 neighbor ixp-peers remove-private-AS
 neighbor ixp-peers route-map set-local-pref in

..next slide
```
One Upstream, Local Exchange Point

neighbor 120.5.10.2 remote-as 100
neighbor 120.5.10.2 peer-group ixp-peers
neighbor 120.5.10.2 prefix-list peer100 in
neighbor 120.5.10.3 remote-as 101
neighbor 120.5.10.3 peer-group ixp-peers
neighbor 120.5.10.3 prefix-list peer101 in
neighbor 120.5.10.4 remote-as 102
neighbor 120.5.10.4 peer-group ixp-peers
neighbor 120.5.10.4 prefix-list peer102 in
neighbor 120.5.10.5 remote-as 103
neighbor 120.5.10.5 peer-group ixp-peers
neighbor 120.5.10.5 prefix-list peer103 in
next slide
One Upstream, Local Exchange Point

!
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list peer100 permit 122.0.0.0/19
ip prefix-list peer101 permit 122.30.0.0/19
ip prefix-list peer102 permit 122.12.0.0/19
ip prefix-list peer103 permit 122.18.128.0/19
!
route-map set-local-pref permit 10
  set local-preference 150
!

One Upstream, Local Exchange

• Note that Router A does not generate the aggregate for AS110

  If Router A becomes disconnected from backbone, then the aggregate is no longer announced to the IX

  BGP failover works as expected

• Note the inbound route-map which sets the local preference higher than the default

  This ensures that local traffic crosses the IXP

  (And avoids potential problems with uRPF check)
One Upstream, Local Exchange Point

- **Router C Configuration**

  ```
 router bgp 110

 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 130
 neighbor 122.102.10.1 prefix-list default in
 neighbor 122.102.10.1 prefix-list my-block out

 ip prefix-list my-block permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0

 ip route 121.10.0.0 255.255.224.0 null0
  ```
One Upstream, Local Exchange Point

• Note Router A configuration
  Prefix-list higher maintenance, but safer
  uRPF on the IX facing interface
  No generation of AS110 aggregate

• IXP traffic goes to and from local IXP, everything else goes to upstream
Aside: IXP Configuration Recommendation

• IXP peers
  The peering ISPs at the IXP exchange prefixes they originate
  Sometimes they exchange prefixes from neighbouring ASNs too

• Be aware that the IXP border router should carry only the
  prefixes you want the IXP peers to receive and the
  destinations you want them to be able to reach
  Otherwise they could point a default route to you and
  unintentionally transit your backbone

• If IXP router is at IX, and distant from your backbone
  Don’t originate your address block at your IXP router
Service Provider Multihoming

Two Upstreams, One local peer
Two Upstreams, One Local Peer

• Connect to both upstream transit providers to see the “Internet”
  
  Provides external redundancy and diversity – the reason to multihome

• Connect to the local peer so that local traffic stays local
  
  Saves spending valuable $ on upstream transit costs for local traffic
Two Upstreams, One Local Peer
Two Upstreams, One Local Peer

- Announce /19 aggregate on each link
- Accept default route only from upstreams
  
  Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes from local peer
Two Upstreams, One Local Peer

- Router A
  
  Same routing configuration as in example with one upstream and one local peer

  Same hardware configuration
Two Upstreams, One Local Peer

• **Router C Configuration**

  `router bgp 110`
  
  `network 121.10.0.0 mask 255.255.224.0`
  
  `neighbor 122.102.10.1 remote-as 130`
  
  `neighbor 122.102.10.1 prefix-list default in`
  
  `neighbor 122.102.10.1 prefix-list my-block out`
  
  `ip prefix-list my-block permit 121.10.0.0/19`
  
  `ip prefix-list default permit 0.0.0.0/0`
  
  `ip route 121.10.0.0 255.255.224.0 null0`
Two Upstreams, One Local Peer

- **Router D Configuration**

```plaintext
router bgp 110

 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.5 remote-as 140
 neighbor 122.102.10.5 prefix-list default in
 neighbor 122.102.10.5 prefix-list my-block out

! ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
! ip route 121.10.0.0 255.255.224.0 null0
```
Two Upstreams, One Local Peer

• This is the simple configuration for Router C and D

• Traffic out to the two upstreams will take nearest exit
  - Inexpensive routers required
  - This is not useful in practice especially for international links
  - Loadsharing needs to be better
Two Upstreams, One Local Peer

• Better configuration options:

Accept full routing from both upstreams

Expensive & unnecessary!

Accept default from one upstream and some routes from the other upstream

The way to go!
Two Upstreams, One Local Peer Full Routes

- **Router C Configuration**

  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 130
 neighbor 122.102.10.1 prefix-list rfc1918-deny in
 neighbor 122.102.10.1 prefix-list my-block out
 neighbor 122.102.10.1 route-map AS130-loadshare in

 ip prefix-list my-block permit 121.10.0.0/19

 ! See www.cymru.com/Documents/bogon-list.html
 ! ...for “RFC1918 and friends” list
 ..next slide
  ```

  Allow all prefixes in apart from RFC1918 and friends
Two Upstreams, One Local Peer
Full Routes

```
ip route 121.10.0.0 255.255.224.0 null0
!
ip as-path access-list 10 permit ^130_+\$
ip as-path access-list 10 permit ^130_+\[0-9]+\$
!
rute-map AS130-loadshare permit 10
 match ip as-path 10
 set local-preference 120
route-map AS130-loadshare permit 20
 set local-preference 80
!```
Two Upstreams, One Local Peer
Full Routes

• **Router D Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.5 remote-as 140

 neighbor 122.102.10.5 prefix-list rfc1918-deny in

 neighbor 122.102.10.5 prefix-list my-block out

 !

 ip prefix-list my-block permit 121.10.0.0/19

 ! See www.cymru.com/Documents/bogon-list.html

 ! ...for “RFC1918 and friends” list

Allow all prefixes in apart from RFC1918 and friends
Two Upstreams, One Local Peer
Full Routes

• Router C configuration:
 Accept full routes from AS130
 Tag prefixes originated by AS130 and AS130’s neighbouring ASes with local preference 120
 Traffic to those ASes will go over AS130 link
 Remaining prefixes tagged with local preference of 80
 Traffic to other all other ASes will go over the link to AS140

• Router D configuration same as Router C without the route-map
Two Upstreams, One Local Peer
Full Routes

• Full routes from upstreams
 Expensive – needs lots of memory and CPU
 Need to play preference games
 Previous example is only an example – real life will need improved fine-tuning!
 Previous example doesn’t consider inbound traffic – see earlier in presentation for examples
Two Upstreams, One Local Peer
Partial Routes

• Strategy:

 Ask one upstream for a default route

 Easy to originate default towards a BGP neighbour

 Ask other upstream for a full routing table

 Then filter this routing table based on neighbouring ASN

 E.g. want traffic to their neighbours to go over the link to that ASN

 Most of what upstream sends is thrown away

 Easier than asking the upstream to set up custom BGP filters for you
Two Upstreams, One Local Peer
Partial Routes

- **Router C Configuration**

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0

 neighbor 122.102.10.1 remote-as 130

 neighbor 122.102.10.1 prefix-list rfc1918-nodef-deny in

 neighbor 122.102.10.1 prefix-list my-block out

 neighbor 122.102.10.1 filter-list 10 in

 neighbor 122.102.10.1 route-map tag-default-low in

 ..next slide

 Allow all prefixes and default in; deny RFC1918 and friends

 AS filter list filters prefixes based on origin ASN
Two Upstreams, One Local Peer
Partial Routes

```plaintext
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
!
ip as-path access-list 10 permit ^(130_)+$
ip as-path access-list 10 permit ^(130_)+_[0-9]+$
!
route-map tag-default-low permit 10
  match ip address prefix-list default
  set local-preference 80
route-map tag-default-low permit 20
!```
Two Upstreams, One Local Peer Partial Routes

- **Router D Configuration**

  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.5 remote-as 140
 neighbor 122.102.10.5 prefix-list default in
 neighbor 122.102.10.5 prefix-list my-block out

 ip prefix-list my-block permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0

 ip route 121.10.0.0 255.255.224.0 null0
  ```
Two Upstreams, One Local Peer
Partial Routes

- **Router C configuration:**
  
  Accept full routes from AS130
  
  (or get them to send less)
  
  Filter ASNs so only AS130 and AS130’s neighbouring ASes are accepted
  
  Allow default, and set it to local preference 80
  
  Traffic to those ASes will go over AS130 link
  
  Traffic to other all other ASes will go over the link to AS140
  
  If AS140 link fails, backup via AS130 – and vice-versa
Two Upstreams, One Local Peer
Partial Routes

- Partial routes from upstreams
  - Not expensive – only carry the routes necessary for loadsharing
  - Need to filter on AS paths
  - Previous example is only an example – real life will need improved fine-tuning!
  - Previous example doesn’t consider inbound traffic – see earlier in presentation for examples
• When upstreams cannot or will not announce default route

Because of operational policy against using “default-originate” on BGP peering

Solution is to use IGP to propagate default from the edge/peering routers
Two Upstreams, One Local Peer
Partial Routes

- **Router C Configuration**

  ```
 router ospf 110

 default-information originate metric 30
 passive-interface Serial 0/0

 router bgp 110

 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 130
 neighbor 122.102.10.1 prefix-list rfc1918-deny in
 neighbor 122.102.10.1 prefix-list my-block out
 neighbor 122.102.10.1 filter-list 10 in

 ..next slide
  ```
Two Upstreams, One Local Peer Partial Routes

ip prefix-list my-block permit 121.10.0.0/19
! See www.cymru.com/Documents/bogon-list.html
! ...for “RFC1918 and friends” list
!
ip route 121.10.0.0 255.255.224.0 null0
ip route 0.0.0.0 0.0.0.0 serial 0/0 254
!
ip as-path access-list 10 permit ^130_)+$
ip as-path access-list 10 permit ^130_)+[0-9]+$
Two Upstreams, One Local Peer
Partial Routes

- **Router D Configuration**

  ```
 router ospf 110
 default-information originate metric 10
 passive-interface Serial 0/0

 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.5 remote-as 140
 neighbor 122.102.10.5 prefix-list deny-all in
 neighbor 122.102.10.5 prefix-list my-block out

 ..next slide
  ```
Two Upstreams, One Local Peer
Partial Routes

ip prefix-list deny-all deny 0.0.0.0/0 le 32
ip prefix-list my-block permit 121.10.0.0/19
!
ip route 121.10.0.0 255.255.224.0 null0
ip route 0.0.0.0 0.0.0.0 serial 0/0 254
!
Two Upstreams, One Local Peer
Partial Routes

- Partial routes from upstreams
  
  Use OSPF to determine outbound path
  
  Router D default has metric 10 – primary outbound path
  
  Router C default has metric 30 – backup outbound path
  
  Serial interface goes down, static default is removed from routing table, OSPF default withdrawn
Aside: Configuration Recommendation

• When distributing internal default by iBGP or OSPF

  Make sure that routers connecting to private peers or to IXPs do NOT carry the default route

  Otherwise they could point a default route to you and unintentionally transit your backbone

Simple fix for Private Peer/IXP routers:

  ip route 0.0.0.0 0.0.0.0 null0
Service Provider Multihoming

Two Tier-1 upstreams, two regional upstreams, and local peers
This is a complex example, bringing together all the concepts learned so far.

Connect to both upstream transit providers to see the “Internet”

- Provides external redundancy and diversity – the reason to multihome

Connect to regional upstreams

- Hopefully a less expensive and lower latency view of the regional internet than is available through upstream transit provider

Connect to private peers for local peering purposes

Connect to the local Internet Exchange Point so that local traffic stays local

- Saves spending valuable $ on upstream transit costs for local traffic
Tier-1 & Regional Upstreams, Local Peers

- **AS 110**
- **Upstream ISP**
  - AS130
  - AS140
  - AS160

- **Regional Upstream**
  - AS150

- **Local Peer**
  - AS120

- **Local Peers**
  - IXP

PacNOG2 Workshops
Tier-1 & Regional Upstreams, Local Peers

- Announce /19 aggregate on each link
- Accept partial/default routes from upstreams
  For default, use 0.0.0.0/0 or a network which can be used as default
- Accept all routes from local peer
- Accept all partial routes from regional upstreams
- This is more complex, but a very typical scenario
Tier-1 & Regional Upstreams, Local Peers
Detail

- **Router A** – local private peer
  Accept all (local) routes
  Local traffic stays local
  Use prefix and/or AS-path filters
  Use local preference (if needed)

- **Router F** – local IXP peering
  Accept all (local) routes
  Local traffic stays local
  Use prefix and/or AS-path filters
• Router B – regional upstream

They provide transit to Internet, but longer AS path than Tier-1s

Accept all regional routes from them

e.g. ^150_[0-9]+$

Ask them to send default, or send a network you can use as default

Set local pref on “default” to 60

Will provide backup to Internet only when direct Tier-1 links go down
• Router E – regional upstream

They provide transit to Internet, but longer AS path than Tier-1s

Accept all regional routes from them

  e.g. ^160_[0-9]+$

Ask them to send default, or send a network you can use as default

  Set local pref on “default” to 70

Will provide backup to Internet only when direct Tier-1 links go down
• **Router C – first Tier-1**

  Accept all their customer and AS neighbour routes from them

  e.g. `^130_[0-9]+$`

  Ask them to send default, or send a network you can use as default

  Set local pref on “default” to 80

  Will provide backup to Internet only when link to second Tier-1 goes down
• **Router D – second Tier-1**

  Ask them to send default, or send a network you can use as default

  This has local preference 100 by default

  All traffic without any more specific path will go out this way
Tier-1 & Regional Upstreams, Local Peers

Summary

• Local traffic goes to local peer and IXP
• Regional traffic goes to two regional upstreams
• Everything else is shared between the two Tier-1s
• To modify loadsharing tweak what is heard from the two regionals and the first Tier-1

   Best way is through modifying the AS-path filter
Tier-1 & Regional Upstreams, Local Peers

• What about outbound announcement strategy?

This is to determine incoming traffic flows

/19 aggregate must be announced to everyone!

/20 or /21 more specifics can be used to improve or modify loadsharing

See earlier for hints and ideas
Tier-1 & Regional Upstreams, Local Peers

• What about unequal circuit capacity?
  AS-path filters are very useful

• What if upstream will only give me full routing table or nothing
  AS-path and prefix filters are very useful
BGP Multihoming Techniques

• Why Multihome?
• Definition & Options
• Preparing the Network
• Basic Multihoming
• “BGP Traffic Engineering”
• Using Communities
Communities

How they are used in practice
Using Communities: RFC1998

- Informational RFC
- Describes how to implement loadsharing and backup on multiple inter-AS links
  BGP communities used to determine local preference in upstream’s network
- Gives control to the customer
- Simplifies upstream’s configuration
  simplifies network operation!
Community values defined to have particular meanings:

- ASx:100  set local pref 100  preferred route
- ASx:90   set local pref 90   backup route if dualhomed on ASx
- ASx:80   set local pref 80   main link is to another ISP with same AS path length
- ASx:70   set local pref 70   main link is to another ISP
RFC1998

• Sample Customer Router Configuration

    router bgp 130
    neighbor x.x.x.x remote-as 100
    neighbor x.x.x.x description Backup ISP
    neighbor x.x.x.x route-map config-community out
    neighbor x.x.x.x send-community

    !
    ip as-path access-list 20 permit ^$
    ip as-path access-list 20 deny .*
    !
    route-map config-community permit 10
    match as-path 20
    set community 100:90
Sample ISP Router Configuration

! Homed to another ISP
ip community-list 70 permit 100:70

! Homed to another ISP with equal ASPATH length
ip community-list 80 permit 100:80

! Customer backup routes
ip community-list 90 permit 100:90

route-map set-customer-local-pref permit 10
  match community 70
  set local-preference 70
• Sample ISP Router Configuration

    route-map set-customer-local-pref permit 20
        match community 80
        set local-preference 80
    
    !

    route-map set-customer-local-pref permit 30
        match community 90
        set local-preference 90
    
    !

    route-map set-customer-local-pref permit 40
        set local-preference 100
• Supporting RFC1998

Many ISPs do, more should

Check AS object in the Internet Routing Registry

If you do, insert comment in AS object in the IRR

Or make a note on your website
Two links to the same ISP

One link primary, the other link backup only
Two links to the same ISP

• AS100 proxy aggregates for AS 65534
Two links to the same ISP (one as backup only)

- Announce /19 aggregate on each link
  - primary link makes standard announcement
  - backup link sends community

- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity
Two links to the same ISP (one as backup only)

• **Router A Configuration**

  ```
 router bgp 65534
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.2 remote-as 100
 neighbor 122.102.10.2 description RouterC
 neighbor 122.102.10.2 prefix-list aggregate out
 neighbor 122.102.10.2 prefix-list default in

 ip prefix-list aggregate permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP (one as backup only)

- **Router B Configuration**

  ```
 router bgp 65534
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.6 remote-as 100
 neighbor 122.102.10.6 description RouterD
 neighbor 122.102.10.6 send-community
 neighbor 122.102.10.6 prefix-list aggregate out
 neighbor 122.102.10.6 route-map routerD-out out
 neighbor 122.102.10.6 prefix-list default in
 neighbor 122.102.10.6 route-map routerD-in in
  ```

  ..next slide
Two links to the same ISP (one as backup only)

```plaintext
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerD-out permit 10
 match ip address prefix-list aggregate
 set community 100:90
route-map routerD-out permit 20
!
route-map routerD-in permit 10
 set local-preference 90
!
```
Two links to the same ISP (one as backup only)

- **Router C Configuration (main link)**
  
  ```
 router bgp 100

 neighbor 122.102.10.1 remote-as 65534
 neighbor 122.102.10.1 default-originate
 neighbor 122.102.10.1 prefix-list Customer in
 neighbor 122.102.10.1 prefix-list default out

 ip prefix-list Customer permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP (one as backup only)

- **Router D Configuration (backup link)**
  
  ```
 router bgp 100

 neighbor 122.102.10.5 remote-as 65534
 neighbor 122.102.10.5 default-originate
 neighbor 122.102.10.5 prefix-list Customer in
 neighbor 122.102.10.5 route-map bgp-cust-in in
 neighbor 122.102.10.5 prefix-list default out

 ip prefix-list Customer permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0
  ```

  !

  ..next slide
Two links to the same ISP (one as backup only)

```
ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip community-list 90 permit 100:90
!
<snip>
 route-map bgp-cust-in permit 30
 match community 90
 set local-preference 90
 route-map bgp-cust-in permit 40
 set local-preference 100
```
Two links to the same ISP (one as backup only)

- This is a simple example
- It looks more complicated than the same example presented earlier which used local preference and MEDs
- But the advantage is that this scales better

  With larger configurations, more customers, more options, it becomes easier to handle each and every requirement
Service Provider use of Communities

Some working examples
Background

- RFC1998 is okay for “simple” multihomed customers
  - assumes that upstreams are interconnected
- ISPs have created many other communities to handle more complex situations
  - Simplify ISP BGP configuration
  - Give customer more policy control
ISP BGP Communities

- There are no recommended ISP BGP communities apart from RFC1998
  - The four standard communities
    - [www.iana.org/assignments/bgp-well-known-communities](http://www.iana.org/assignments/bgp-well-known-communities)
- Efforts have been made to document from time to time
  - But so far... nothing more... 😞
  - Collection of ISP communities at [www.onesc.net/communities](http://www.onesc.net/communities)
- ISP policy is usually published
  - On the ISP’s website
  - Referenced in the AS Object in the IRR
### Some ISP Examples: Sprintlink

**What You Can Control**

**AS-PATH PREPENDS**

Sprint allows customers to use AS-path prepending to adjust route preference on the network. Such prepending will be received and passed on properly without notifying Sprint of your change in announcements.

Additionally, Sprint will prepend AS1239 to BGP sessions with certain autonomous systems depending on the received community. Currently, the following ASes are supported: 1668, 209, 2914, 3300, 3365, 3549, 3861, 4635, 701, 7016, 752 and 8220.

<table>
<thead>
<tr>
<th>String</th>
<th>Resulting AS Path to ASXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>65000:XXX</td>
<td>Do not advertise to ASXXX</td>
</tr>
<tr>
<td>65001:XXX</td>
<td>1239 (default) ...</td>
</tr>
<tr>
<td>65002:XXX</td>
<td>1239 1239 ...</td>
</tr>
<tr>
<td>65003:XXX</td>
<td>1239 1239 1239 ...</td>
</tr>
<tr>
<td>65004:XXX</td>
<td>1239 1239 1239 1239 ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>String</th>
<th>Resulting AS Path to ASXXX in Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>65070:XXX</td>
<td>Do not advertise to ASXXX</td>
</tr>
<tr>
<td>65071:XXX</td>
<td>1239 (default) ...</td>
</tr>
<tr>
<td>65072:XXX</td>
<td>1239 1239 ...</td>
</tr>
<tr>
<td>65073:XXX</td>
<td>1239 1239 1239 ...</td>
</tr>
<tr>
<td>65074:XXX</td>
<td>1239 1239 1239 1239 ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>String</th>
<th>Resulting AS Path to ASXXX in Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>65050:XXX</td>
<td>Do not advertise to ASXXX</td>
</tr>
<tr>
<td>65051:XXX</td>
<td>1239 (default) ...</td>
</tr>
<tr>
<td>65052:XXX</td>
<td>1239 1239 ...</td>
</tr>
<tr>
<td>65053:XXX</td>
<td>1239 1239 1239 ...</td>
</tr>
<tr>
<td>65054:XXX</td>
<td>1239 1239 1239 1239 ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>String</th>
<th>Resulting AS Path to ASXXX in North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>65010:XXX</td>
<td>Do not advertise to ASXXX</td>
</tr>
<tr>
<td>65011:XXX</td>
<td>1239 (default) ...</td>
</tr>
<tr>
<td>65012:XXX</td>
<td>1239 1239 ...</td>
</tr>
<tr>
<td>65013:XXX</td>
<td>1239 1239 1239 ...</td>
</tr>
<tr>
<td>65014:XXX</td>
<td>1239 1239 1239 1239 ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>String</th>
<th>Resulting AS Path to all supported ASes</th>
</tr>
</thead>
<tbody>
<tr>
<td>65000:0</td>
<td>Do not advertise</td>
</tr>
<tr>
<td>65001:0</td>
<td>1239 (default) ...</td>
</tr>
<tr>
<td>65002:0</td>
<td>1239 1239 ...</td>
</tr>
<tr>
<td>65003:0</td>
<td>1239 1239 1239 ...</td>
</tr>
</tbody>
</table>

More info at

[www.sprintlink.net/policy/bgp.html](http://www.sprintlink.net/policy/bgp.html)
Some ISP Examples
AAPT

aut-num: AS2764  
as-name: ASN-CONNECT-NET  
descr: AAPT Limited  
admin-c: CNO2-AP  
techn-c: CNO2-AP  
remarks: Community support definitions  
remarks: Community Definition  
remarks: 2764:2 Don't announce outside local POP  
remarks: 2764:4 Lower local preference by 15  
remarks: 2764:5 Lower local preference by 5  
remarks: 2764:6 Announce to customers and all peers  
          (incl int'l peers), but not transit  
remarks: 2764:7 Announce to customers only  
remarks: 2764:14 Announce to AANX  
notify: routing@connect.com.au  
mnt-by: CONNECT-AU  
changed: nobody@connect.com.au 20050225  
source: CCAIR

Some ISP Examples
MCI Europe

aut-num: AS702
descr: MCI EMEA - Commercial IP service provider in Europe
remarks: MCI uses the following communities with its customers:
  702:80  Set Local Pref 80 within AS702
  702:120 Set Local Pref 120 within AS702
  702:20  Announce only to MCI AS'es and MCI customers
  702:30  Keep within Europe, don't announce to other MCI AS's
  702:1  Prepend AS702 once at edges of MCI to Peers
  702:2  Prepend AS702 twice at edges of MCI to Peers
  702:3  Prepend AS702 thrice at edges of MCI to Peers
Advanced communities for customers
  702:7020 Do not announce to AS702 peers with a scope of National but advertise to Global Peers, European Peers and MCI customers.
  702:7001 Prepend AS702 once at edges of MCI to AS702 peers with a scope of National.

Additional details of the MCI communities are located at:
http://global.mci.com/uk/customer/bgp/

mnt-by: WCOM-EMEA-RICE-MNT
changed: rice@lists.mci.com 20041006
source: RIPE

And several more!
### Some ISP Examples

#### BT Ignite

aut-num:	AS5400
descr:	BT Ignite European Backbone
remarks:	Community to
remarks:	Not announce
remarks:	5400:1000 All peers & Transits
remarks:	5400:1500 All Transits
remarks:	5400:1501 Sprint Transit (AS1239)
remarks:	5400:1502 SAVVIS Transit (AS3561)
remarks:	5400:1503 Level 3 Transit (AS3356)
remarks:	5400:1504 AT&T Transit (AS7018)
remarks:	5400:1505 UUnet Transit (AS701)
remarks:	5400:1001 Nexica (AS24592)
remarks:	5400:1002 Fujitsu (AS3324)
remarks:	5400:1003 Unisource (AS3300)
notify:	notify@eu.bt.net
mnt-by:	CIP-MNT
source:	RIPE
Community to:	AS prepends 5400
5400:2000	
5400:2500	
5400:2501	
5400:2502	
5400:2503	
5400:2504	
5400:2505	
5400:2001	
5400:2002	
5400:2003	

And many many more!
Some ISP Examples
Carrier1

aut-num: AS8918
descr: Carrier1 Autonomous System
<snip>
remarks: Community Definition
remarks: *
remarks: 8918:2000 Do not announce to C1 customers
remarks: 8918:2010 Do not announce to C1 peers, peers+ and transit
remarks: 8918:2015 Do not announce to C1 transit providers
remarks: *
remarks: 8918:2020 Do not announce to Teleglobe (AS 6453)
remarks: 8918:2035 Do not announce to UUNet (AS 702)
remarks: 8918:2040 Do not announce to Cogent (AS 174)
remarks: 8918:2050 Do not announce to T-Systems (AS 3320)
remarks: 8918:2060 Do not announce to Sprint (AS 1239)
remarks: *
remarks: 8918:2070 Do not announce to AMS-IX peers
remarks: 8918:2080 Do not announce to NL-IX peers
remarks: 8918:2090 Do not announce to Packet Exchange Peers
<snip>
notify: inoc@carrier1.net
mnt-by: CARRIER1-MNT
source: RIPE

And many many more!
Some ISP Examples
Level 3

aut-num: AS3356
descr: Level 3 Communications
<snip>

remarks: --------------------------------------------------------
remarks: customer traffic engineering communities - Suppression
remarks: --------------------------------------------------------
remarks: 64960:XXX - announce to AS XXX if 65000:0
remarks: 65000:0 - announce to customers but not to peers
remarks: 65000:XXX - do not announce at peerings to AS XXX
remarks: --------------------------------------------------------
remarks: customer traffic engineering communities - Prepending
remarks: --------------------------------------------------------
remarks: 65001:0 - prepend once to all peers
remarks: 65001:XXX - prepend once at peerings to AS XXX
remarks: 65002:0 - prepend twice to all peers
remarks: 65002:XXX - prepend twice at peerings to AS XXX
remarks: 65003:0 - prepend 3x to all peers
remarks: 65003:XXX - prepend 3x at peerings to AS XXX
remarks: 65004:0 - prepend 4x to all peers
remarks: 65004:XXX - prepend 4x at peerings to AS XXX
<snip>
mnt-by: LEVEL3-MNT
source: RIPE

And many many more!
Creating your own community policy

• Consider creating communities to give policy control to customers
  
  Reduces technical support burden

  Reduces the amount of router reconfiguration, and the chance of mistakes

  Use the previous examples as a guideline
Summary

• Multihoming is not hard, really…
  *Keep It Simple & Stupid!*

• Full routing table is *rarely* required
  A default is often just as good
  If customers want 190k prefixes, charge them money for it
BGP Multihoming Techniques

The End! 😊