Introduction to BGP

ISP/IXP Workshops
Border Gateway Protocol

• Routing Protocol used to exchange routing information between networks
 exterior gateway protocol
• Described in RFC4271
 RFC4276 gives an implementation report on BGP-4
 RFC4277 describes operational experiences using BGP-4
• The Autonomous System is BGP’s fundamental operating unit
 It is used to uniquely identify networks with common routing policy
BGP

• Path Vector Protocol
• Incremental Updates
• Many options for policy enforcement
• Classless Inter Domain Routing (CIDR)
• Widely used for Internet backbone
• Autonomous systems
Path Vector Protocol

- BGP is classified as a *path vector* routing protocol (see RFC 1322)

 A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination.
Path Vector Protocol
Definitions

• **Transit** – carrying traffic across a network, usually for a fee
• **Peering** – exchanging routing information and traffic
• **Default** – where to send traffic when there is no explicit match in the routing table
The default free zone is made up of Internet routers which have explicit routing information about the rest of the Internet, and therefore do not need to use a default route.
Peering and Transit example

A and B can peer, but need transit arrangements with D to get packets to/from C
Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique number
Autonomous System Number (ASN)

- An ASN is a 16 bit number
 - 1-64511 are assigned by the RIRs
 - 64512-65534 are for private use and should never appear on the Internet
 - 0 and 65535 are reserved
- 32 bit ASNs are coming soon
- ASNs are distributed by the Regional Internet Registries
 - Also available from upstream ISPs who are members of one of the RIRs
 - Current ASN allocations up to 41983 have been made to the RIRs
Demarcation Zone (DMZ)

- Shared network between ASes
BGP Basics

BGP speakers are called peers
BGP General Operation

- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the forwarding table
- Best path is sent to external BGP neighbours
- Policies applied by influencing the best path selection
Constructing the Forwarding Table

- **BGP “in” process**
 - receives path information from peers
 - results of BGP path selection placed in the BGP table
 - “best path” flagged

- **BGP “out” process**
 - announces “best path” information to peers

- **Best paths installed in forwarding table if:**
 - prefix and prefix length are unique
 - lowest “protocol distance”
Constructing the Forwarding Table

BGP in process

BGP table

forwarding table

BGP out process

bgp peer

in

discarded

accepted

everything

best paths

out
• BGP used internally (iBGP) and externally (eBGP)
• iBGP used to carry
 some/all Internet prefixes across ISP backbone
 ISP’s customer prefixes
• eBGP used to
 exchange prefixes with other ASes
 implement routing policy
BGP/IGP model used in ISP networks

- Model representation
External BGP Peering (eBGP)

- Between BGP speakers in different AS
- Should be directly connected
- Never run an IGP between eBGP peers
Configuring External BGP

Router A in AS100

```
interface ethernet 5/0
  ip address 102.102.10.2 255.255.255.240
!
router bgp 100
  network 100.100.8.0 mask 255.255.252.0
  neighbor 102.102.10.1 remote-as 101
  neighbor 102.102.10.1 prefix-list RouterC in
  neighbor 102.102.10.1 prefix-list RouterC out
!
```

- **Local ASN**: 100
- **Remote ASN**: 101
- **Inbound and outbound filters**
- **ip address of Router C ethernet interface**: 102.102.10.2
- **ip address on ethernet interface**: 102.102.10.1
Router C in AS101

interface ethernet 1/0/0
 ip address 102.102.10.1 255.255.255.240
!
router bgp 101
 network 100.100.8.0 mask 255.255.252.0
 neighbor 102.102.10.2 remote-as 100
 neighbor 102.102.10.2 prefix-list RouterA in
 neighbor 102.102.10.2 prefix-list RouterA out
!
Internal BGP (iBGP)

- BGP peer within the same AS
- Not required to be directly connected
 IGP takes care of inter-BGP speaker connectivity
- iBGP speakers need to be fully meshed
 they originate connected networks
 they do not pass on prefixes learned from other iBGP speakers
Internal BGP Peering (iBGP)

- Topology independent
- Each iBGP speaker must peer with every other iBGP speaker in the AS
Peering using Loop-back Address

- Peer with loop-back address
 Loop-back interface does not go down – ever!
- iBGP session is not dependent on state of a single interface
- iBGP session is not dependent on physical topology
Configuring Internal BGP

Router A in AS100

interface loopback 0
 ip address 105.3.7.1 255.255.255.255
!
router bgp 100
 network 100.100.1.0
 neighbor 105.3.7.2 remote-as 100
 neighbor 105.3.7.2 update-source loopback0
 neighbor 105.3.7.3 remote-as 100
 neighbor 105.3.7.3 update-source loopback0
!

Local ASN

ip address on loopback interface

ip address of Router B loopback interface
Configuring Internal BGP

Router B in AS100

interface loopback 0
 ip address 105.3.7.2 255.255.255.255

router bgp 100
 network 100.100.1.0
 neighbor 105.3.7.1 remote-as 100
 neighbor 105.3.7.1 update-source loopback0
 neighbor 105.3.7.3 remote-as 100
 neighbor 105.3.7.3 update-source loopback0
Inserting prefixes into BGP

- Two ways to insert prefixes into BGP
 redistribute static
 network command
Inserting prefixes into BGP – redistribute static

- **Configuration Example:**

  ```
  router bgp 100
  redistribute static
  ip route 102.10.32.0 255.255.254.0 serial0
  ```

- **Static route must exist before redistribute command will work**

- **Forces origin to be “incomplete”**

- **Care required!**
Inserting prefixes into BGP – redistribute static

- Care required with **redistribute**!

 redistribute <routing-protocol> means everything in the <routing-protocol> will be transferred into the current routing protocol

 Will not scale if uncontrolled

 Best avoided if at all possible

 redistribute normally used with “route-maps” and under tight administrative control
Inserting prefixes into BGP – network command

- Configuration Example
  ```
  router bgp 100
  network 102.10.32.0 mask 255.255.254.0
  ip route 102.10.32.0 255.255.254.0 serial0
  ```
- A matching route must exist in the routing table before the network is announced
- Forces origin to be “IGP”
Configuring Aggregation

- Three ways to configure route aggregation
 - redistribute static
 - aggregate-address
 - network command
• **Configuration Example:**

```bash
router bgp 100
    redistribute static
ip route 102.10.0.0 255.255.0.0 null0 250
```

• **static route to “null0” is called a pull up route**

 packets only sent here if there is no more specific match in the routing table

 distance of 250 ensures this is last resort static

 care required – see previously!
Configuring Aggregation – Network Command

- Configuration Example

router bgp 100

 network 102.10.0.0 mask 255.255.0.0

ip route 102.10.0.0 255.255.0.0 null0 250

- A matching route must exist in the routing table before the network is announced

- Easiest and best way of generating an aggregate
Configuring Aggregation – aggregate-address command

• **Configuration Example**

```plaintext
router bgp 100
  network 102.10.32.0 mask 255.255.252.0
  aggregate-address 102.10.0.0 255.255.0.0 [ summary-only ]
```

• **Requires more specific prefix in BGP table before aggregate is announced**

• **{summary-only} keyword**

 optional keyword which ensures that only the summary is announced if a more specific prefix exists in the routing table
Historical Defaults – Auto Summarisation

- **Disable historical default 1**
- **Automatically summarises subprefixes to the classful network when redistributing to BGP from another routing protocol**

 Example:

 \[61.10.8.0/22 \rightarrow 61.0.0.0/8\]

- **Must** be turned off for any Internet connected site using BGP

  ```
  router bgp 100
  no auto-summary
  ```
Historical Defaults – Synchronisation

- Disable historical default 2
- In Cisco IOS, BGP does not advertise a route before all routers in the AS have learned it via an IGP
- Disable synchronisation if:
 AS doesn’t pass traffic from one AS to another, or
 All transit routers in AS run BGP, or
 iBGP is used across backbone

 `router bgp 100
 no synchronization`
Summary
BGP neighbour status

Router1>sh ip bgp sum
BGP router identifier 100.1.15.224, local AS number 10
BGP table version is 27, main routing table version 27
14 network entries using 1582 bytes of memory
14 path entries using 672 bytes of memory
3/2 BGP path/bestpath attribute entries using 324 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
BGP using 2578 total bytes of memory
BGP activity 17/3 prefixes, 22/8 paths, scan interval 60 secs

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>V</th>
<th>AS</th>
<th>MsgRcvd</th>
<th>MsgSent</th>
<th>TblVer</th>
<th>InQ</th>
<th>OutQ</th>
<th>Up/Down</th>
<th>State/PfxRcd</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.1.31.224</td>
<td>4</td>
<td>10</td>
<td>195</td>
<td>193</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>03:09:48</td>
<td>1</td>
</tr>
<tr>
<td>100.1.63.224</td>
<td>4</td>
<td>10</td>
<td>71</td>
<td>70</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>01:05:31</td>
<td>1</td>
</tr>
<tr>
<td>100.2.15.224</td>
<td>4</td>
<td>10</td>
<td>46</td>
<td>47</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>00:17:00</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BGP Version

Updates sent and received

Updates waiting
Summary

- BGP4 – path vector protocol
- iBGP versus eBGP
- stable iBGP – peer with loopbacks
- announcing prefixes & aggregates
- no synchronization & no auto-summary
Introduction to BGP

ISP/IXP Workshops