BGP Best Current Practices

ISP/IXP Workshops
What is BGP for??

What is an IGP not for?
BGP versus OSPF/ISIS

- Internal Routing Protocols (IGPs)
 examples are ISIS and OSPF
 used for carrying **infrastructure** addresses
 NOT used for carrying Internet prefixes or customer prefixes
BGP versus OSPF/ISIS

• BGP used internally (iBGP) and externally (eBGP)
 • iBGP used to carry
 some/all Internet prefixes across backbone
customer prefixes
 • eBGP used to
 exchange prefixes with other ASes
 implement routing policy
BGP versus OSPF/ISIS

• DO NOT:
 distribute BGP prefixes into an IGP
 distribute IGP routes into BGP
 use an IGP to carry customer prefixes

• YOUR NETWORK WILL NOT SCALE
Aggregation
Aggregation

- Aggregation means announcing the address block received from the RIR to the other ASes connected to your network

- Subprefixes of this aggregate *may be*:
 - Used internally in the ISP network
 - Announced to other ASes to aid with multihoming

- Unfortunately too many people are still thinking about class Cs, resulting in a proliferation of /24s in the Internet routing table
• ISP has 101.10.0.0/19 address block

• To put into BGP as an aggregate:

 router bgp 100

 network 101.10.0.0 mask 255.255.224.0

 ip route 101.10.0.0 255.255.224.0 null0

• The static route is a “pull up” route

 more specific prefixes within this address block ensure connectivity to ISP’s customers

 “longest match lookup”
Aggregation

- Address block should be announced to the Internet as an aggregate
- Subprefixes of address block should NOT be announced to Internet unless special circumstances (more later)
- Aggregate should be generated internally
 Not on the network borders!
Announcing Aggregate – Cisco IOS

• Configuration Example

router bgp 100
 network 101.10.0.0 mask 255.255.224.0
 neighbor 102.102.10.1 remote-as 101
 neighbor 102.102.10.1 prefix-list out-filter out
!
 ip route 101.10.0.0 255.255.224.0 null0
!
 ip prefix-list out-filter permit 101.10.0.0/19
 ip prefix-list out-filter deny 0.0.0.0/0 le 32
Announcing an Aggregate

- ISPs who don’t and won’t aggregate are held in poor regard by community
- Registries publish their minimum allocation size
 Anything from a /20 to a /22 depending on RIR
 Different sizes for different address blocks
- No real reason to see anything longer than a /22 prefix in the Internet
 BUT there are currently >103000 /24s!
• Customer has /23 network assigned from AS100’s /19 address block
• AS100 announced /19 aggregate to the Internet
Aggregation – Good Example

- Customer link goes down
 - Their /23 network becomes unreachable
 - /23 is withdrawn from AS100’s iBGP
 - /19 aggregate is still being announced
 - No BGP hold down problems
 - No BGP propagation delays
 - No damping by other ISPs

- Customer link returns
 - Their /23 network is visible again
 - The /23 is re-injected into AS100’s iBGP
 - The whole Internet becomes visible immediately
 - Customer has Quality of Service perception
• Customer has /23 network assigned from AS100’s /19 address block
• AS100 announces customers’ individual networks to the Internet
Aggregation – Bad Example

- Customer link goes down
 Their /23 network becomes unreachable
 /23 is withdrawn from AS100’s iBGP
- Their ISP doesn’t aggregate its /19 network block
 /23 network withdrawal announced to peers
 starts rippling through the Internet
 added load on all Internet backbone routers as network is removed from routing table

- Customer link returns
 Their /23 network is now visible to their ISP
 Their /23 network is re-advertised to peers
 Starts rippling through Internet
 Load on Internet backbone routers as network is reinserted into routing table
 Some ISP’s suppress the flaps
 Internet may take 10-20 min or longer to be visible
 Where is the Quality of Service???
Aggregation – Summary

• Good example is what everyone should do!
 Adds to Internet stability
 Reduces size of routing table
 Reduces routing churn
 Improves Internet QoS for everyone

• Bad example is what too many still do!
 Why? Lack of knowledge?
The Internet Today (June 2006)

- **Current Internet Routing Table Statistics**

 - BGP Routing Table Entries: 190279
 - Prefixes after maximum aggregation: 104688
 - Unique prefixes in Internet: 93243
 - Prefixes smaller than registry alloc: 94161
 - /24s announced: 103044
 - only 5747 /24s are from 192.0.0.0/8
 - ASes in use: 22424
Efforts to improve aggregation

• The CIDR Report
 Initiated and operated for many years by Tony Bates
 Now combined with Geoff Huston’s routing analysis
 www.cidr-report.org
 Results e-mailed on a weekly basis to most operations lists around the world
 Lists the top 30 service providers who could do better at aggregating
Receiving Prefixes
Receiving Prefixes

- There are three scenarios for receiving prefixes from other ASNs

 Customer talking BGP

 Peer talking BGP

 Upstream/Transit talking BGP

- Each has different filtering requirements and need to be considered separately
Receiving Prefixes: From Customers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream customer.

- If ISP has assigned address space to its customer, then the customer IS entitled to announce it back to his ISP.

- If the ISP has NOT assigned address space to its customer, then:

 Check in the five RIR databases to see if this address space really has been assigned to the customer.

 The tool: whois –h whois.apnic.net x.x.x.0/24
Receiving Prefixes: From Customers

- Example use of whois to check if customer is entitled to announce address space:

```
pfs-pc$ whois -h whois.apnic.net 202.12.29.0
netname:      APNIC-AP-AU-BNE
descr:        APNIC Pty Ltd - Brisbane Offices + Servers
descr:        Level 1, 33 Park Rd
descr:        PO Box 2131, Milton
descr:        Brisbane, QLD.
country:      AU
admin-c:      HM20-AP
tech-c:       NO4-AP
mnt-by:       APNIC-HM
changed:      hm-changed@apnic.net 20030108
status:       ASSIGNED PORTABLE
source:       APNIC
```

Portable – means its an assignment to the customer, the customer can announce it to you
Receiving Prefixes: From Customers

• Example use of whois to check if customer is entitled to announce address space:

```
$ whois -h whois.ripe.net 193.128.2.0
inetnum: 193.128.2.0 - 193.128.2.15
descr: Wood Mackenzie
country: GB
admin-c: DB635-RIPE
techn-c: DB635-RIPE
status: ASSIGNED PA
mnt-by: AS1849-MNT
changed: davids@uk.uu.net 20020211
source: RIPE

route: 193.128.0.0/14
descr: PIPEX-BLOCK1
origin: AS1849
notify: routing@uk.uu.net
mnt-by: AS1849-MNT
changed: beny@uk.uu.net 20020321
source: RIPE
```
Receiving Prefixes from customer: Cisco IOS

• For Example:
 downstream has 100.50.0.0/20 block
 should only announce this to upstreams
 upstreams should only accept this from them

• Configuration on upstream
 router bgp 100
 neighbor 102.102.10.1 remote-as 101
 neighbor 102.102.10.1 prefix-list customer in
!
 ip prefix-list customer permit 100.50.0.0/20
Receiving Prefixes: From Peers

- A peer is an ISP with whom you agree to exchange prefixes you originate into the Internet routing table.

 Prefixes you accept from a peer are only those they have indicated they will announce.

 Prefixes you announce to your peer are only those you have indicated you will announce.
Receiving Prefixes:
From Peers

• Agreeing what each will announce to the other:
 Exchange of e-mail documentation as part of the peering agreement, and then ongoing updates

 OR

 Use of the Internet Routing Registry and configuration tools such as the IRRToolSet

 www.isc.org/sw/IRRToolSet/
Receiving Prefixes from peer: Cisco IOS

- For Example:
 peer has 220.50.0.0/16, 61.237.64.0/18 and 81.250.128.0/17 address blocks

- Configuration on local router

 router bgp 100

 neighbor 102.102.10.1 remote-as 101

 neighbor 102.102.10.1 prefix-list my-peer in

 ip prefix-list my-peer permit 220.50.0.0/16
 ip prefix-list my-peer permit 61.237.64.0/18
 ip prefix-list my-peer permit 81.250.128.0/17
 ip prefix-list my-peer deny 0.0.0.0/0 le 32
Receiving Prefixes: From Upstream/Transit Provider

- Upstream/Transit Provider is an ISP who you pay to give you transit to the **WHOLE** Internet
- Receiving prefixes from them is not desirable unless really necessary
 - special circumstances – see later
- Ask upstream/transit provider to either:
 - originate a default-route
 - OR
 - announce one prefix you can use as default
Receiving Prefixes: From Upstream/Transit Provider

- **Downstream Router Configuration**

 router bgp 100

 network 101.10.0.0 mask 255.255.224.0

 neighbor 101.5.7.1 remote-as 101

 neighbor 101.5.7.1 prefix-list infilt in

 neighbor 101.5.7.1 prefix-list outfilt out

 !

 ip prefix-list infilt in permit 0.0.0.0/0

 !

 ip prefix-list outfilt in permit 101.10.0.0/19
Receiving Prefixes:
From Upstream/Transit Provider

• Upstream Router Configuration

 router bgp 101

 neighbor 101.5.7.2 remote-as 100

 neighbor 101.5.7.2 default-originate

 neighbor 101.5.7.2 prefix-list cust-in in

 neighbor 101.5.7.2 prefix-list cust-out out

 !

 ip prefix-list cust-in permit 101.10.0.0/19

 !

 ip prefix-list cust-out permit 0.0.0.0/0
Receiving Prefixes: From Upstream/Transit Provider

• If necessary to receive prefixes from any provider, care is required
 don’t accept RFC1918 etc prefixes
 don’t accept your own prefixes
 don’t accept default (unless you need it)
 don’t accept prefixes longer than /24

• Check Project Cymru’s list of “bogons”
 http://www.cymru.com/Documents/bogon-list.html
Receiving Prefixes

router bgp 100
 network 101.10.0.0 mask 255.255.224.0
 neighbor 101.5.7.1 remote-as 101
 neighbor 101.5.7.1 prefix-list in-filter in

 !
 ip prefix-list in-filter deny 0.0.0.0/0 ! Block default
 ip prefix-list in-filter deny 0.0.0.0/8 le 32
 ip prefix-list in-filter deny 10.0.0.0/8 le 32
 ip prefix-list in-filter deny 101.10.0.0/19 le 32 ! Block local prefix
 ip prefix-list in-filter deny 127.0.0.0/8 le 32
 ip prefix-list in-filter deny 169.254.0.0/16 le 32
 ip prefix-list in-filter deny 172.16.0.0/12 le 32
 ip prefix-list in-filter deny 192.0.2.0/24 le 32
 ip prefix-list in-filter deny 192.168.0.0/16 le 32
 ip prefix-list in-filter deny 224.0.0.0/3 le 32 ! Block multicast
 ip prefix-list in-filter deny 0.0.0.0/0 ge 25 ! Block prefixes >/24
 ip prefix-list in-filter permit 0.0.0.0/0 le 32
Receiving Prefixes

- Paying attention to prefixes received from customers, peers and transit providers assists with:
 - The integrity of the local network
 - The integrity of the Internet
- Responsibility of all ISPs to be good Internet citizens
Prefixes into iBGP
Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes
don’t use IGP
- Point static route to customer interface
- Use BGP network statement
- As long as static route exists (interface active), prefix will be in BGP
Router Configuration: network statement

• Example:

```plaintext
interface loopback 0
  ip address 215.17.3.1 255.255.255.255
!
interface Serial 5/0
  ip unnumbered loopback 0
  ip verify unicast reverse-path
!
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
  network 215.34.10.0 mask 255.255.252.0
```
Injecting prefixes into iBGP

• interface flap will result in prefix withdraw and reannounce

 use “ip route…permanent”

• many ISPs use redistribute static rather than network statement

 only use this if you understand why
Router Configuration: redistribute static

- **Example:**

  ```
  ip route 215.34.10.0 255.255.252.0 Serial 5/0
  
  router bgp 100
  redistribute static route-map static-to-bgp
  
  route-map static-to-bgp permit 10
  match ip address prefix-list ISP-block
  set origin igp
  
  ip prefix-list ISP-block permit 215.34.10.0/22 le 30
  ```
Injecting prefixes into iBGP

- Route-map ISP-block can be used for many things:
 - setting communities and other attributes
 - setting origin code to IGP, etc
- Be careful with prefix-lists and route-maps
 - absence of either/both means all statically routed prefixes go into iBGP
Scaling the network

How to get out of carrying all prefixes in IGP
Why use BGP rather than IGP?

- IGP has Limitations:
 - The more routing information in the network
 - Periodic updates/flooding “overload”
 - Long convergence times
 - Affects the core first

- Policy definition
 - Not easy to do
Preparing the Network

• We want to deploy BGP now…
• BGP will be used therefore an ASN is required
• If multihoming to different ISPs is intended in the near future, a public ASN should be obtained:

 Either go to upstream ISP who is a registry member, or
 Apply to the RIR yourself for a one off assignment, or
 Ask an ISP who is a registry member, or
 Join the RIR and get your own IP address allocation too (this option strongly recommended)!
Preparing the Network

• The network is not running any BGP at the moment single statically routed connection to upstream ISP
• The network is not running any IGP at all Static default and routes through the network to do “routing”
Preparation of the Network

IGP

- Decide on IGP: OSPF or ISIS 😊
- Assign loopback interfaces and /32 addresses to each router which will run the IGP
 - Loopback is used for OSPF and BGP router id anchor
 - Used for iBGP and route origination
- Deploy IGP (e.g. OSPF)
 - IGP can be deployed with NO IMPACT on the existing static routing
 - e.g. OSPF distance is 110, static distance is 1
 - Smallest distance wins
Preventing the Network
IGP (cont)

• Be prudent deploying IGP – keep the Link State
 Database Lean!

 Router loopbacks go in IGP

 Backbone WAN point to point links go in IGP

 (In fact, any link where IGP dynamic routing will be run
 should go into IGP)

 Summarise on area/level boundaries (if possible) – i.e. think
 about your IGP address plan
• Routes which don’t go into the IGP include:

 Dynamic assignment pools (DSL/Cable/Dial)

 Customer point to point link addressing

 (using next-hop-self in iBGP ensures that these do NOT need to
 be in IGP)

 Static/Hosting LANs

 Customer assigned address space

 Anything else not listed in the previous slide
Preparing the Network

iBGP

- Second step is to configure the local network to use iBGP
- iBGP can run on all routers, or a subset of routers, or just on the upstream edge
- **iBGP must run on all routers which are in the transit path between external connections**
Preparing the Network

iBGP (Transit Path)

- **iBGP must run on all routers which are in the transit path between external connections**
- Routers C, E and F are not in the transit path
 - Static routes or IGP will suffice
- Router D is in the transit path
 - Will need to be in iBGP mesh, otherwise routing loops will result
Preparing the Network Layers

• Typical SP networks have three layers:
 Core – the backbone, usually the transit path
 Distribution – the middle, PoP aggregation layer
 Aggregation – the edge, the devices connecting customers
• iBGP is optional
 Many ISPs run iBGP here, either partial routing (more common) or full routing (less common)
 Full routing is not needed unless customers want full table
 Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing
 Communities make this administratively easy

• Many aggregation devices can’t run iBGP
 Static routes from distribution devices for address pools
 IGP for best exit
Preparing the Network Distribution Layer

- Usually runs iBGP
 Partial or full routing (as with aggregation layer)
- But does not have to run iBGP
 IGP is then used to carry customer prefixes (does not scale)
 IGP is used to determine nearest exit
- Networks which plan to grow large should deploy iBGP from day one
 Migration at a later date is extra work
 No extra overhead in deploying iBGP; indeed, the IGP benefits
Preparing the Network
Core Layer

• Core of network is usually the transit path
• iBGP necessary between core devices

 Full routes or partial routes:

 Transit ISPs carry full routes in core
 Edge ISPs carry partial routes only

• Core layer includes AS border routers
Decide on:

- **Best iBGP policy**

 Will it be full routes everywhere, or partial, or some mix?

- **iBGP scaling technique**

 Community policy?

 Route-reflectors?

 Techniques such as peer templates?
Preparing the Network
iBGP Implementation

• Then deploy iBGP:

 Step 1: Introduce iBGP mesh on chosen routers
 make sure that iBGP distance is greater than IGP distance
 Use `distance bgp 200 200 200`

 Step 2: Install “customer” prefixes into iBGP
 Check! Does the network still work?

 Step 3: Carefully remove the static routing for the prefixes
 now in IGP and iBGP
 Check! Does the network still work?

 Step 4: Deployment of eBGP follows
Install “customer” prefixes into iBGP?

- Customer assigned address space
 - Network statement/static route combination
 - Use unique community to identify customer assignments

- Customer facing point-to-point links
 - Redistribute connected routes through filters which only permit point-to-point link addresses to enter iBGP
 - Use a unique community to identify point-to-point link addresses (these are only required for your monitoring system)

- Dynamic assignment pools & local LANs
 - Simple network statement will do this
 - Use unique community to identify these networks
Carefully remove static routes?

- Work on one router at a time:

 Check that static route for a particular destination is also learned either by IGP or by iBGP

 If so, remove it

 If not, establish why and fix the problem

 (Remember to look in the RIB, not the FIB!)

- Then the next router, until the whole PoP is done

- Then the next PoP, and so on until the network is now dependent on the IGP and iBGP you have deployed
• Previous steps are NOT flag day steps

Each can be carried out during different maintenance periods, for example:

Step One on Week One
Step Two on Week Two
Step Three on Week Three
And so on

And with proper planning will have NO customer visible impact at all
Preparing the Network Configuration Summary

- IGP essential networks are in IGP
- Customer networks are now in iBGP
 iBGP deployed over the backbone
 Full or Partial or Upstream Edge only
- BGP distance is greater than any IGP
- Now ready to deploy eBGP
BGP Best Current Practices

ISP/IXP Workshops