Introduction to the DNS system

Alain Patrick Alina
aalain@trstech.net
Purpose of naming

- Addresses are used to locate objects
- Names are easier to remember than numbers
- You would like to get to the address or other objects using a name
- DNS provides a mapping from names to resources of several types
Names and addresses in general

- An address is how you get to an endpoint
 - Typically, hierarchical (for scaling):
 - 950 Charter Street, Redwood City CA, 94063
 - 204.152.187.11, +1-650-381-6003

- A “name” is how an endpoint is referenced
 - Typically, no structurally significant hierarchy
 - “David”, “Tokyo”, “itu.int”
Naming History

- **1970’s ARPANET**
 - Host.txt maintained by the SRI-NIC
 - pulled from a single machine
 - Problems
 - traffic and load
 - Name collisions
 - Consistency
- **DNS** created in 1983 by Paul Mockapetris (RFCs 1034 and 1035), modified, updated, and enhanced by a myriad of subsequent RFCs
DNS

- A lookup mechanism for translating objects into other objects
- A globally distributed, loosely coherent, scalable, reliable, dynamic database
- Comprised of three components
 - A “name space”
 - Servers making that name space available
 - Resolvers (clients) which query the servers about the name space
DNS Features: Global Distribution

- Data is maintained locally, but retrievable globally
 - No single computer has all DNS data
- DNS lookups can be performed by any device
- Remote DNS data is locally cachable to improve performance
DNS Features: Loose Coherency

- The database is always internally consistent
 - Each version of a subset of the database (a zone) has a serial number
 - The serial number is incremented on each database change

- Changes to the master copy of the database are replicated according to timing set by the zone administrator

- Cached data expires according to timeout set by zone administrator
DNS Features: Scalability

- No limit to the size of the database
 - One server has over 20,000,000 names
 - Not a particularly good idea

- No limit to the number of queries
 - 24,000 queries per second handled easily

- Queries distributed among masters, slaves, and caches
DNS Features: Reliability

- Data is replicated
 - Data from master is copied to multiple slaves

- Clients can query
 - Master server
 - Any of the copies at slave servers

- Clients will typically query local caches

- DNS protocols can use either UDP or TCP
 - If UDP, DNS protocol handles retransmission, sequencing, etc.
DNS Features: Dynamicity

- Database can be updated dynamically
 - Add/delete/modify of any record

- Modification of the master database triggers replication
 - Only master can be dynamically updated
 - Creates a single point of failure
DNS Concepts

- Next slides are about concepts

- After this set of slides you should understand
 - How the DNS is built
 - Why it is built the way it is
 - The terminology used throughout the course
The namespace needs to be made hierarchical to be able to scale.

The idea is to name objects based on
- location (within country, set of organizations, set of companies, etc)
- unit within that location (company within set of company, etc)
- object within unit (name of person in company)
Concept: DNS Names 2
How names appear in the DNS

Fully Qualified Domain Name (FQDN)

WWW.RIPE.NET.

- labels separated by dots
- DNS provides a mapping from FQDNs to resources of several types
- Names are used as a key when fetching data in the DNS

Note the trailing dot
The DNS maps names into data using Resource Records.

More detail later
Concept: DNS Names 3

- Domain names can be mapped to a tree.
- New branches at the ‘dots’
- No restriction to the amount of branches.
Concept: Domains

- Domains are “namespaces”
- Everything below .com is in the com domain.
- Everything below ripe.net is in the ripe.net domain and in the net domain.
Delegation

- Administrators can create subdomains to group hosts
 - According to geography, organizational affiliation or any other criterion

- An administrator of a domain can delegate responsibility for managing a subdomain to someone else
 - But this isn’t required

- The parent domain retains links to the delegated subdomain
 - The parent domain “remembers” who it delegated the subdomain to
Concept: Zones and Delegations

- Zones are “administrative spaces”
- Zone administrators are responsible for portion of a domain’s name space
- Authority is delegated from a parent and to a child
Concept: Name Servers

- Name servers answer ‘DNS’ questions.

- Several types of name servers
 - Authoritative servers
 - master (primary)
 - slave (secondary)
 - (Caching) recursive servers
 - also caching forwarders
 - Mixture of functionality
Concept: Name Servers

authoritative name server

- Give authoritative answers for one or more zones.
- The master server normally loads the data from a zone file.
- A slave server normally replicates the data from the master via a zone transfer.
Concept: Name Servers

recursive server

- Recursive servers do the actual lookups; they ask questions to the DNS on behalf of the clients.

- Answers are obtained from authoritative servers but the answers forwarded to the clients are marked as not authoritative.

- Answers are stored for future reference in the cache.
Concept: Resolvers

- Resolvers ask the questions to the DNS system on behalf of the application.

- Normally implemented in a system library (e.g., libc)

  ```c
  gethostbyname(char *name);
  gethostbyaddr(char *addr, int len, type);
  ```
Concept: Resolving process & Cache

Question: www.ripe.net A

Resolver

192.168.5.10

www.ripe.net A ?

Add to cache

Caching forwarder (recursive)

www.ripe.net A ?

Ask ripe server @ ns.ripe.net (+ glue)

www.ripe.net A ?

Ask gtdl-server @ X.gtdl-servers.net (+ glue)

www.ripe.net A ?

root-server

gtld-server

ripe-server

192.168.5.10

192.168.5.10

Add to cache
Concept: Resource Records (more detail)

- Resource records consist of it’s name, it’s TTL, it’s class, it’s type and it’s RDATA
- TTL is a timing parameter
- IN class is widest used
- There are multiple types of RR records
- Everything behind the type identifier is called rdata
Example: RRs in a zone file

ripe.net. 7200 IN SOA ns.ripe.net. olaf.ripe.net. (2001061501 ; Serial 43200 ; Refresh 12 hours 14400 ; Retry 4 hours 345600 ; Expire 4 days 7200 ; Negative cache 2 hours)

ripe.net. 7200 IN NS ns.ripe.net.
ripe.net. 7200 IN NS ns.eu.net.

pinkje.ripe.net. 3600 IN A 193.0.1.162
host25.ripe.net. 2600 IN A 193.0.3.25

Label ttl class type rdata
Resource Record: SOA and NS

- The SOA and NS records are used to provide information about the DNS itself.
- The NS indicates where information about a given zone can be found:

 ripe.net. 7200 IN NS ns.ripe.net.
 ripe.net. 7200 IN NS ns.eu.net.

- The SOA record provides information about the start of authority, i.e. the top of the zone, also called the APEX.
Resource Record: SOA

- Master server: A.GTLD-SERVERS.net.
- Contact address: nstld.verisign-grs.com.
- Version number: 2002021301
- Timing parameters:
 - Serial: 30M
 - Refresh: 15M
 - Retry: 1W
 - Expiry: 1D
 - Negative answer TTL:
Concept: TTL and other Timers

- TTL is a timer used in caches
 - An indication for how long the data may be reused
 - Data that is expected to be ‘stable’ can have high TTLs

- SOA timers are used for maintaining consistency between primary and secondary servers
Places where DNS data lives

Changes in DNS do not propagate instantly!

- Registry DB
- Master
- Slave
- Cache server
- Slave server

Upload of zone data is local policy

Might take up to refresh to get data from master

Not going to net if TTL>0
To remember...

- Multiple authoritative servers to distribute load and risk:
 - Put your name servers apart from each other

- Caches to reduce load to authoritative servers and reduce response times

- SOA timers and TTL need to be tuned to needs of zone. Stable data: higher numbers
What have we learned
What are we about to learn

- We learned about the architecture:
 - resolvers,
 - caching forwarders,
 - authoritative servers,
 - timing parameters

- We continue writing a zone file
Writing a zone file.

- Zone file is written by the zone administrator
- Zone file is read by the master server and it’s content is replicated to slave servers
- What is in the zone file will end up in the database
- Because of timing issues it might take some time before the data is actually visible at the client side.
First attempt

- The ‘header’ of the zone file
 - Start with a SOA record
 - Include authoritative name servers and, if needed, glue
 - Add other information

- Add other RRs

- Delegate to other zones
The SOA record

```
secret-wg.org. 3600 IN SOA bert.secret-wg.org. ( 
  olaf\.kolkman.ripe.net. 2002021301 ; serial 
  1h ; refresh 
  30M ; retry 
  1W ; expiry 
  3600 ) ; neg. answ. ttl
```

- Olaf.Kolkman@ripe.net → olaf\.kolkman.ripe.net
- Serial number: 32bit circular arithmetic
 - People often use date format
 - To be increased after editing
- The timers above qualify as reasonable
Authoritative NS records and related A records

- NS record for all the authoritative servers.
 - They need to carry the zone at the moment you publish

- A records only for “in-zone” name servers.
 - Delegating NS records might have glue associated.

```
secret-wg.org.       3600 IN NS   bert.secret-wg.org.
secret-wg.org.       3600 IN NS   NS2.secret-wg.org.
bert.secret-wg.org.   3600 IN A   193.0.0.4
NS2.secret-wg.org.   3600 IN A   193.0.0.202
```
Other ‘APEX’ data

secret-wg.org. 3600 IN MX 50 mailhost.secret-wg.org.
secret-wg.org. 3600 IN MX 150 mailhost2.secret-wg.org.

secret-wg.org. 3600 IN LOC (52 21 23.0 N 04 57 05.5 E 0m 100m 100m 100m)
secret-wg.org. 3600 IN TXT “Demonstration and test zone”

Examples:
- MX records for mail (see next slide)
- Location records
- TXT records
- A records
- KEY records for dnssec
Intermezzo: MX record

- SMTP (simple mail transfer protocol) uses MX records to find the destination mail server.
- If a mail is sent to olaf@ripe.net the sending mail agent looks up ‘ripe.net MX’
- MX record contains mail relays with priority.
 - The lower the number the higher the priority.
- Don’t add MX records without having a mail relay configured.
Other data in the zone

- Add all the other data to your zone file.
- Some notes on notation.
 - Note the fully qualified domain name including trailing dot.
 - Note TTL and CLASS

localhost.secret-wg.org. 3600 IN A 127.0.0.1

bert.secret-wg.org. 4500 IN A 193.0.0.4
Zone file format short cuts
nice formatting

secret-wg.org. 3600 IN SOA bert.secret-wg.org. (olaf\.kolkman.ripe.net. 2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. Ttl
secret-wg.org. 3600 IN NS bert.secret-wg.org.
secret-wg.org. 3600 IN NS NS2.secret-wg.org.
secret-wg.org. 3600 IN MX 50 mailhost.secret-wg.org.
secret-wg.org. 3600 IN MX 150 mailhost2.secret-wg.org.
secret-wg.org. 3600 IN LOC (52 21 23.0 N 04 57 05.5 E 0m 100m 100m 100m)
secret-wg.org. 3600 IN TXT "Demonstration and test zone"
bert.secret-wg.org. 4500 IN A 193.0.0.4
NS2.secret-wg.org. 3600 IN A 193.0.0.202
localhost.secret-wg.org. 3600 IN A 127.0.0.1

bert.secret-wg.org. 3600 IN A 193.0.0.4
Zone file format short cuts: repeating last name

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>TTL</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>secret-wg.org.</td>
<td>SOA</td>
<td>3600</td>
<td>bert.secret-wg.org. (</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>olaf.kolkman.ripe.net.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2002021301; serial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1h; refresh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30M; retry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1W; expiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3600); neg. answ. Ttl</td>
</tr>
<tr>
<td>bert.secret-wg.org.</td>
<td>NS</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>NS2.secret-wg.org.</td>
<td>NS</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>mailhost secretive.org.</td>
<td>MX</td>
<td>3600</td>
<td>50 mailhost secretive.org.</td>
</tr>
<tr>
<td>mailhost2 secretive.org.</td>
<td>MX</td>
<td>3600</td>
<td>150 mailhost2 secretive.org.</td>
</tr>
<tr>
<td>localhost secretive.org.</td>
<td>LOC</td>
<td>3600</td>
<td>(52 21 23.0 N 04 57 05.5 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0m 100m 100m 100m)</td>
</tr>
<tr>
<td>bert.secret-wg.org.</td>
<td>TXT</td>
<td>3600</td>
<td>“Demonstration and test zone”</td>
</tr>
<tr>
<td>NS2.secret-wg.org.</td>
<td>A</td>
<td>3600</td>
<td>193.0.0.4</td>
</tr>
<tr>
<td>localhost secretive.org.</td>
<td>A</td>
<td>4500</td>
<td>127.0.0.1</td>
</tr>
<tr>
<td>bert.secret-wg.org.</td>
<td>A</td>
<td>3600</td>
<td>193.0.0.4</td>
</tr>
</tbody>
</table>
Zone file format shortcuts: default TTL

$TTL 3600 ; Default TTL directive
secret-wg.org. IN SOA bert.secret-wg.org. (olaf\kolkman.ripe.net. 2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. Ttl

IN NS bert.secret-wg.org.
IN NS NS2.secret-wg.org.
IN MX 50 mailhost.secret-wg.org.
IN MX 150 mailhost2.secret-wg.org.

IN LOC (52 21 23.0 N 04 57 05.5 E 0m 100m 100m 100m)
IN TXT "Demonstration and test zone"

bert.secret-wg.org. IN A 193.0.0.4
NS2.secret-wg.org. IN A 193.0.0.202

localhost.secret-wg.org. IN A 127.0.0.1

bert.secret-wg.org. 4500 IN A 193.0.0.4
Zone file format short cuts: ORIGIN

$TTL 3600 ; Default TTL directive
$ORIGIN secret-wg.org.
@

IN SOA bert (olaf\kolkman.ripe.net.
2002021301 ; serial
1h ; refresh
30M ; retry
1W ; expiry
3600) ; neg. answ. Ttl

IN NS bert
IN NS NS2
IN MX 50 mailhost
IN MX 150 mailhost2

IN LOC (52 21 23.0 N 04 57 05.5 E
0m 100m 100m 100m)

IN TXT "Demonstration and test zone"

bert IN A 193.0.0.4
NS2 IN A 193.0.0.202

localhost IN A 127.0.0.1

bert 4500 IN A 193.0.0.4

www IN CNAME bert
Delegating a zone (becoming a parent)

- Delegate authority for a sub domain to another party (splitting of disi.ripe.net from ripe.net)
Concept: Glue

- Delegation is done by adding NS records:

  ```
  disi.ripe.net. NS ns1.disi.ripe.net.
  disi.ripe.net. NS ns2.disi.ripe.net.
  ```

- How to get to ns1 and ns2... We need the addresses.

- Add glue records to so that resolvers can reach ns1 and ns2.

  ```
  ns1.disi.ripe.net. A 10.0.0.1
  ns2.disi.ripe.net. A 10.0.0.2
  ```
Concept: Glue (continued)

- Glue is ‘non-authoritative’ data
- Don’t include glue for servers that are not in sub zones

```
disi.ripe.net.       NS       ns1.disi.ripe.net.
disi.ripe.net       NS       ns2.ripe.net.
disi.ripe.net       NS       ns.bert.secret-wg.org.
ns1.disi.ripe.net.   A        10.0.0.1
```

Only this record needs glue
Delegating disi.ripe.net. from ripe.net.

- Setup minimum two servers
- Create zone file with NS records
- Add all disi.ripe.net data

ripe.net
- Add NS records and glue
- Make sure there is no other data from the disi.ripe.net. zone in the zone file.
Becoming a child
In general

- Buy your domain at favorite registry
- Set up your name servers
- Register the name servers: your registry will communicate the name servers to the registrar who will make sure the name servers are published.
 - This process might take hours-days.
- Registrars may require a sensible setup