BGP Attributes and Policy Control

ISP/IXP Workshops
Agenda

• BGP Attributes
• BGP Path Selection
• Applying Policy
BGP Attributes

The “tools” available for the job
What Is an Attribute?

- Describes the characteristics of prefix
- Transitive or non-transitive
- Some are mandatory
AS-Path

- Sequence of ASes a route has traversed
- Loop detection
- Apply policy

![Diagram showing AS-path with AS numbers and IP addresses]

- AS 300
 - AS 200: 170.10.0.0/16
 - AS 100: 180.10.0.0/16

- AS 400
 - 180.10.0.0/16
 - 170.10.0.0/16

- AS 500
 - 180.10.0.0/16
 - 170.10.0.0/16
 - 150.10.0.0/16
AS-Path loop detection

180.10.0.0/16 is not accepted by AS100 as the prefix has AS100 in its AS-PATH – this is loop detection in action.
Next Hop

AS 200
150.10.0.0/16

AS 100
160.10.0.0/16

AS 300

150.10.0.0/16
160.10.0.0/16

150.10.1.1
150.10.1.2

eBGP – address of external neighbour
iBGP – NEXT_HOP from eBGP
iBGP Next Hop

Next hop is ibgp router loopback address

Recursive route look-up
Third Party Next Hop

- eBGP between Router A and Router C
- eBGP between Router A and Router B
- 120.68.1/24 prefix has next hop address of 150.1.1.3 – this is passed on to Router C instead of 150.1.1.2
- More efficient
- No extra config needed
Next Hop Best Practice

• IOS default is for external next-hop to be propagated unchanged to iBGP peers

 This means that IGP has to carry external next-hops

 Forgetting means external network is invisible

 With many eBGP peers, it is unnecessary extra load on IGP

• ISP Best Practice is to change external next-hop to be that of the local router

 neighbor x.x.x.x next-hop-self
Next Hop (Summary)

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Use “next-hop-self” for external next hops
- Allows IGP to make intelligent forwarding decision
Origin

• Conveys the origin of the prefix
• **Historical** attribute

 Used in transition from EGP to BGP

• Influences best path selection

• Three values: IGP, EGP, incomplete

 IGP – generated by BGP network statement

 EGP – generated by EGP

 incomplete – redistributed from another routing protocol
Aggregator

- Conveys the IP address of the router or BGP speaker generating the aggregate route
- Useful for debugging purposes
- Does not influence best path selection
Local Preference

AS 100
160.10.0.0/16

AS 200

AS 300

AS 400

160.10.0.0/16 500
> 160.10.0.0/16 800
Local Preference

- Local to an AS – non-transitive
 Default local preference is 100 (IOS)
- Used to influence BGP path selection
 determines best path for outbound traffic
- Path with highest local preference wins
Local Preference

• Configuration of Router B:

 router bgp 400
 neighbor 120.5.1.1 remote-as 300
 neighbor 120.5.1.1 route-map local-pref in

 route-map local-pref permit 10
 match ip address prefix-list MATCH
 set local-preference 800

 ip prefix-list MATCH permit 160.10.0.0/16
Multi-Exit Discriminator (MED)
Multi-Exit Discriminator

• Inter-AS – non-transitive & optional attribute

• Used to convey the relative preference of entry points
determines best path for inbound traffic

• Comparable if paths are from same AS

 bgp always-compare-med allows comparisons of MEDs from different ASes

• Path with lowest MED wins

• Absence of MED attribute implies MED value of zero (RFC4271)
MED & IGP Metric

- IGP metric can be conveyed as MED

 `set metric-type internal` in route-map

 enables BGP to advertise a MED which corresponds to the IGP metric values

 changes are monitored (and re-advertised if needed) every 600s

 `bgp dynamic-med-interval <secs>`
Multi-Exit Discriminator

• Configuration of Router B:

 router bgp 400
 neighbor 120.5.1.1 remote-as 200
 neighbor 120.5.1.1 route-map set-med out

 route-map set-med permit 10
 match ip address prefix-list MATCH
 set metric 1000

 ip prefix-list MATCH permit 120.68.1.0/24
Weight

- Not really an attribute – local to router
- Highest weight wins
- Applied to all routes from a neighbour
 \[\text{neighbor 120.5.7.1 weight 100}\]
- Weight assigned to routes based on filter
 \[\text{neighbor 120.5.7.3 filter-list 3 weight 50}\]
Weight – Used to help Deploy RPF

- Best path to AS4 from AS1 is always via B due to local-pref.
- But packets arriving at A from AS4 over the direct C to A link will pass the RPF check as that path has a priority due to the weight being set.

If weight was not set, best path back to AS4 would be via B, and the RPF check would fail.
Community

- Communities are described in RFC1997
 Transitive and Optional Attribute
- 32 bit integer
 Represented as two 16 bit integers (RFC1998)
 Common format is $<local-ASN>:xx$
 0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved
- Used to group destinations
 Each destination could be member of multiple communities
- Very useful in applying policies within and between ASes
Well-Known Communities

• Several well known communities

 www.iana.org/assignments/bgp-well-known-communities

• no-export 65535:65281
 do not advertise to any eBGP peers

• no-advertise 65535:65282
 do not advertise to any BGP peer

• no-export-subconfed 65535:65283
 do not advertise outside local AS (only used with confederations)

• no-peer 65535:65284
 do not advertise to bi-lateral peers (RFC3765)
AS100 announces aggregate and subprefixes
aim is to improve loadsharing by leaking subprefixes

Subprefixes marked with no-export community

Router G in AS200 does not announce prefixes with no-export community set
No-Peer Community

- Sub-prefixes marked with no-peer community are not sent to bilateral peers
- They are only sent to upstream providers
Summary
Attributes in Action

Router1>sh ip bgp
BGP table version is 28, local router ID is 100.1.15.224
Status codes: s suppressed, d damped, h history,
* valid, > best,i - internal, r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 100.1.0.0/20</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>*>i 100.1.16.0/20</td>
<td>100.1.31.224</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
<tr>
<td>*>i 100.1.32.0/19</td>
<td>100.1.63.224</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
</tbody>
</table>

...
BGP Path Selection Algorithm

Why is this the best path?
BGP Path Selection Algorithm for IOS
Part One

- Do not consider path if no route to next hop
- Do not consider iBGP path if not synchronised (Cisco IOS)
- Highest weight (local to router)
- Highest local preference (global within AS)
- Prefer locally originated route
- Shortest AS path
BGP Path Selection Algorithm for IOS
Part Two

- Lowest origin code
 - IGP < EGP < incomplete
- Lowest Multi-Exit Discriminator (MED)
 - If `bgp deterministic-med`, order the paths before comparing
 - If `bgp always-compare-med`, then compare for all paths
 - otherwise MED only considered if paths are from the same AS (default)
BGP Path Selection Algorithm for IOS
Part Three

- Prefer eBGP path over iBGP path
- Path with lowest IGP metric to next-hop
- For eBGP paths:
 - If multipath is enabled, install N parallel paths in forwarding table
 - If router-id is the same, go to next step
 - If router-id is not the same, select the oldest path
BGP Path Selection Algorithm for IOS
Part Four

• Lowest router-id (originator-id for reflected routes)
• Shortest cluster-list
 Client must be aware of Route Reflector attributes!
• Lowest neighbour address
Applying Policy with BGP

How to use the “tools”
Applying Policy with BGP

- Policy-based on AS path, community or the prefix
- Rejecting/accepting selected routes
- Set attributes to influence path selection
- Tools:
 - Prefix-list (filters prefixes)
 - Filter-list (filters ASes)
 - Route-maps and communities
Policy Control – Prefix List

- Per neighbour prefix filter
 incremental configuration
- Inbound or Outbound
- Based upon network numbers (using familiar IPv4 address/mask format)
- Using access-lists for filtering prefixes was deprecated long ago

Strongly discouraged!
Prefix-list Command Syntax

• [no] ip prefix-list list-name [seq seq-value] permit|deny network/len [ge ge-value] [le le-value]

 network/len: The prefix and its length
 ge ge-value: "greater than or equal to"
 le le-value: "less than or equal to"

• Both "ge" and "le" are optional. Used to specify the range of the prefix length to be matched for prefixes that are more specific than network/len

• Sequence number is also optional

 no ip prefix-list sequence-number to disable display of sequence numbers
Prefix Lists – Examples

- Deny default route

ip prefix-list EG deny 0.0.0.0/0

- Permit the prefix 35.0.0.0/8

ip prefix-list EG permit 35.0.0.0/8

- Deny the prefix 172.16.0.0/12

ip prefix-list EG deny 172.16.0.0/12

- In 192/8 allow up to /24

ip prefix-list EG permit 192.0.0.0/8 le 24

 This allows all prefix sizes in the 192.0.0.0/8 address block, apart from /25, /26, /27, /28, /29, /30, /31 and /32.
Prefix Lists – Examples

• In 192/8 deny /25 and above

 ip prefix-list EG deny 192.0.0.0/8 ge 25

This denies all prefix sizes /25, /26, /27, /28, /29, /30, /31 and /32 in the address block 192.0.0.0/8.

It has the same effect as the previous example

• In 193/8 permit prefixes between /12 and /20

 ip prefix-list EG permit 193.0.0.0/8 ge 12 le 20

This denies all prefix sizes /8, /9, /10, /11, /21, /22, … and higher in the address block 193.0.0.0/8.

• Permit all prefixes

 ip prefix-list EG permit 0.0.0.0/0 le 32

0.0.0.0 matches all possible addresses, “0 le 32” matches all possible prefix lengths
Policy Control – Prefix List

Example Configuration

```
router bgp 100
  network 105.7.0.0 mask 255.255.0.0
  neighbor 102.10.1.1 remote-as 110
  neighbor 102.10.1.1 prefix-list PEER-IN in
  neighbor 102.10.1.1 prefix-list PEER-OUT out
!
ip prefix-list PEER-IN deny 218.10.0.0/16
ip prefix-list PEER-IN permit 0.0.0.0/0 le 32
ip prefix-list PEER-OUT permit 105.7.0.0/16
ip prefix-list PEER-OUT deny 0.0.0.0/0 le 32
```
Policy Control – Filter List

• Filter routes based on AS path
 Inbound or Outbound
• Example Configuration:

```
router bgp 100
  network 105.7.0.0 mask 255.255.0.0
  neighbor 102.10.1.1 filter-list 5 out
  neighbor 102.10.1.1 filter-list 6 in
!
ip as-path access-list 5 permit ^200$
ip as-path access-list 6 permit ^150$
```
Policy Control – Regular Expressions

• Like Unix regular expressions
 . Match one character
 * Match any number of preceding expression
 + Match at least one of preceding expression
 ^ Beginning of line
 $ End of line
 _ Beginning, end, white-space, brace
 | Or
 () brackets to contain expression
Policy Control – Regular Expressions

• Simple Examples

 .* match anything
 .+ match at least one character
 ^$ match routes local to this AS
 _1800$ originated by AS1800
 ^1800_ received from AS1800
 1800 via AS1800
 _790_1800_ via AS1800 and AS790
 1800+ multiple AS1800 in sequence
 (used to match AS-PATH prepends)
 65530 via AS65530 (confederations)
Policy Control – Regular Expressions

• Not so simple Examples

\^[0-9]+\$

Match AS_PATH length of one

\^[0-9]+[0-9]++\$

Match AS_PATH length of two

\^[0-9][0-9]+[0-9]++\$

Match AS_PATH length of one or two

\^[0-9][0-9][0-9][0-9]*[0-9]++\$

Match AS_PATH length of one or two (will also match zero)

\^[0-9]+[0-9]+[0-9]++\$

Match AS_PATH length of three

(701|1800).

Match anything which has gone through AS701 or AS1800

1849(+.+_)12163$

Match anything of origin AS12163 and passed through AS1849
Policy Control – Route Maps

• A route-map is like a “programme” for IOS
• Has “line” numbers, like programmes
• Each line is a separate condition/action
• Concept is basically:

 if *match* then do *expression* and *exit*
 else
 if *match* then do *expression* and *exit*
 else *etc*
Route Maps – Caveats

• Lines can have multiple set statements but only one match statement

• Line with only a set statement
 all prefixes are matched and set
 any following lines are ignored

• Line with a match/set statement and no following lines
 only prefixes matching go through
 the rest are dropped
Route Maps – Caveats

• Example

 omitting the third line below means that prefixes not matching list-one or list-two are dropped

 route-map sample permit 10
 match ip address prefix-list list-one
 set local-preference 120
 !
 route-map sample permit 20
 match ip address prefix-list list-two
 set local-preference 80
 !
 route-map sample permit 30 ! Don’t forget this
• Example Configuration – route map and prefix-lists

```
router bgp 100
    neighbor 1.1.1.1 route-map infilter in

route-map infilter permit 10
    match ip address prefix-list HIGH-PREF
    set local-preference 120

 route-map infilter permit 20
    match ip address prefix-list LOW-PREF
    set local-preference 80

ip prefix-list HIGH-PREF permit 10.0.0.0/8
ip prefix-list LOW-PREF permit 20.0.0.0/8
```
• **Example Configuration – route map and filter lists**

```plaintext
router bgp 100
    neighbor 102.10.1.2 remote-as 200
    neighbor 102.10.1.2 route-map filter-on-as-path in

! route-map filter-on-as-path permit 10
    match as-path 1
    set local-preference 80
!
    route-map filter-on-as-path permit 20
    match as-path 2
    set local-preference 200
!
    ip as-path access-list 1 permit _150$
    ip as-path access-list 2 permit _210_
```
Policy Control – Route Maps

• Example configuration of AS-PATH prepend

  ```
  router bgp 300
  network 105.7.0.0 mask 255.255.0.0
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 route-map SETPATH out
  
  route-map SETPATH permit 10
  set as-path prepend 300 300
  ```

 • Use your **own** AS number when prepending
 Otherwise BGP loop detection may cause disconnects
Policy Control – Matching Communities

• Example Configuration

```sh
router bgp 100
    neighbor 102.10.1.2 remote-as 200
    neighbor 102.10.1.2 route-map filter-on-community in
!
route-map filter-on-community permit 10
    match community 1
    set local-preference 50
!
route-map filter-on-community permit 20
    match community 2 exact-match
    set local-preference 200
!
ip community-list 1 permit 150:3 200:5
ip community-list 2 permit 88:6
```
Policy Control – Setting Communities

- Example Configuration

```bash
router bgp 100
  network 105.7.0.0 mask 255.255.0.0
  neighbor 102.10.1.1 remote-as 200
  neighbor 102.10.1.1 send-community
  neighbor 102.10.1.1 route-map set-community out

route-map set-community permit 10
  match ip address prefix-list NO-ANNOUNCE
  set community no-export

route-map set-community permit 20
  match ip address prefix-list AGGREGATE

ip prefix-list NO-ANNOUNCE permit 105.7.0.0/16 ge 17
ip prefix-list AGGREGATE permit 105.7.0.0/16
```
Managing Policy Changes

• New policies only apply to the updates going through the router **AFTER** the policy has been introduced or changed.

• To facilitate policy changes on the entire BGP table the router handles the BGP peerings need to be “refreshed”

 This is done by clearing the BGP session either **in** or **out**, for example:

 `clear ip bgp <neighbour-addr> in|out`

• Do **NOT** forget **in** or **out** — doing so results in a hard reset of the BGP session.
Managing Policy Changes

- Ability to clear the BGP sessions of groups of neighbours configured according to several criteria

 - `clear ip bgp <addr> [in|out]`

 - `<addr>` may be any of the following:
 - `x.x.x.x` \(\text{IP address of a peer}\)
 - `*` \(\text{all peers}\)
 - `ASN` \(\text{all peers in an AS}\)
 - `external` \(\text{all external peers}\)
 - `peer-group <name>` \(\text{all peers in a peer-group}\)
BGP Attributes and Policy Control

ISP/IXP Workshops
Supplementary Materials
Policy Control – Route Maps

- Route Map MATCH Articles
 - as-path
 - clns address
 - clns next-hop
 - clns route-source
 - community
 - interface
 - ip address
 - ip next-hop
 - ip route-source
 - length
 - metric
 - nlri
 - route-type
 - tag
Policy Control – Route Maps

• Route map SET Articles
 as-path
dampening
automatic-tag
default interface
clns
interface
comm-list
ip default next-hop
community
ip next-hop
Policy Control – Route Maps

• Route map SET Articles

ip precedence
ip qos-group
ip tos
level
local preference
metric
metric-type
next-hop
nlri multicast
nlri unicast
origin
tag
traffic-index
weight
Aggregation Policies

• **Suppress Map**

 Used to suppress selected more-specific prefixes (e.g. defined through a route-map) in the absence of the `summary-only` keyword.

• **Unsuppress Map**

 Used to unsuppress selected more-specific prefixes per BGP peering when the `summary-only` keyword is in use.

Aggregation Policies – Suppress Map

- **Example**

  ```
  router bgp 100
  network 102.10.10.0
  network 102.10.11.0
  network 102.10.12.0
  network 102.10.33.0
  network 102.10.34.0
  aggregate-address 102.10.0.0 255.255.0.0 suppress-map block-net
  neighbor 102.5.7.2 remote-as 200
  !
  route-map block-net permit 10
  match ip address prefix-list SUPPRESS
  !
  ip prefix-list SUPPRESS permit 102.10.8.0/21 le 32
  ip prefix-list SUPPRESS deny 0.0.0.0/0 le 32
  !
  ```

Aggregation Policies – Suppress Map

• **show ip bgp** on the local router

```
router1#sh ip bgp
BGP table version is 11, local router ID is 102.5.7.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*&gt; 102.10.0.0/16</td>
<td>0.0.0.0</td>
<td></td>
<td>32768</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>s&gt; 102.10.10.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>s&gt; 102.10.11.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>s&gt; 102.10.12.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>*&gt; 102.10.33.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>*&gt; 102.10.34.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>32768</td>
<td>i</td>
</tr>
</tbody>
</table>
```
• **show ip bgp** on the remote router

```
router2#sh ip bgp
BGP table version is 90, local router ID is 102.5.7.2
Status codes: s suppressed, d damped, h history, * valid, > best,
               i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
```

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 102.10.0.0/16</td>
<td>102.5.7.1</td>
<td>0</td>
<td></td>
<td>100</td>
<td>i</td>
</tr>
<tr>
<td>*> 102.10.33.0</td>
<td>102.5.7.1</td>
<td>0</td>
<td></td>
<td>100</td>
<td>i</td>
</tr>
<tr>
<td>*> 102.10.34.0</td>
<td>102.5.7.1</td>
<td>0</td>
<td></td>
<td>100</td>
<td>i</td>
</tr>
</tbody>
</table>
Aggregation Policies – Unsuppress Map

• Example

 router bgp 100
 network 102.10.10.0
 network 102.10.11.0
 network 102.10.12.0
 network 102.10.33.0
 network 102.10.34.0
 aggregate-address 102.10.0.0 255.255.0.0 summary-only
 neighbor 102.5.7.2 remote-as 200
 neighbor 102.5.7.2 unsuppress-map leak-net

! route-map leak-net permit 10
 match ip address prefix-list LEAK

! ip prefix-list LEAK permit 102.10.8.0/21 le 32
ip prefix-list LEAK deny 0.0.0.0/0 le 32
• **show ip bgp** on the local router

```
router1#sh ip bgp
BGP table version is 11, local router ID is 102.5.7.1
Status codes: s suppressed, d damped, h history, * valid, > best,
              i -internal
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*&gt; 102.10.0.0/16</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>s&gt; 102.10.10.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>s&gt; 102.10.11.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>s&gt; 102.10.12.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>s&gt; 102.10.33.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>s&gt; 102.10.34.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>32768</td>
<td>i</td>
</tr>
</tbody>
</table>
```
Aggregation Policies – Unsuppress Map

- `show ip bgp` on the remote router

```
router2#sh ip bgp
BGP table version is 90, local router ID is 102.5.7.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*&gt; 102.10.0.0/16</td>
<td>102.5.7.1</td>
<td>0</td>
<td>100</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>*&gt; 102.10.10.0</td>
<td>102.5.7.1</td>
<td>0</td>
<td></td>
<td>100</td>
<td>i</td>
</tr>
<tr>
<td>*&gt; 102.10.11.0</td>
<td>102.5.7.1</td>
<td>0</td>
<td></td>
<td>100</td>
<td>i</td>
</tr>
<tr>
<td>*&gt; 102.10.12.0</td>
<td>102.5.7.1</td>
<td>0</td>
<td></td>
<td>100</td>
<td>i</td>
</tr>
</tbody>
</table>
```
Aggregation Policies – Aggregate Address

- Summary-only used
 - all subprefixes suppressed
 - unsuppress-map to selectively leak subprefixes
 - bgp per neighbour configuration

- Absence of summary-only
 - no subprefixes suppressed
 - suppress-map to selectively suppress subprefixes
 - bgp global configuration