Reverse DNS
Overview

• Principles
• Creating reverse zones
• Setting up nameservers
• Reverse delegation procedures
What is ‘Reverse DNS’?

- ‘Forward DNS’ maps names to numbers
 - svc00.apnic.net -> 202.12.28.131

- ‘Reverse DNS’ maps numbers to names
 - 202.12.28.131 -> svc00.apnic.net
Reverse DNS - why bother?

- Service denial
 - That only allow access when fully reverse delegated eg. anonymous ftp

- Diagnostics
 - Assisting in trace routes etc

- SPAM identifications

- Registration responsibilities
Principles – DNS tree

- Mapping numbers to names -

RIR

ISP

Customer

22.64.202.in-addr.arpa
Creating reverse zones

• Same as creating a forward zone file
 – SOA and initial NS records are the same as normal zone
 – Main difference
 • need to create additional PTR records

• Can use BIND or other DNS software to create and manage reverse zones
 – Details can be different
Creating reverse zones - contd

- Files involved
 - Zone files
 - Forward zone file
 - e.g. db.domain.net
 - Reverse zone file
 - e.g. db.192.168.254
 - Config files
 - <named.conf>
 - Other
 - Hints files etc.
 - Root.hints
Start of Authority (SOA) record

```
<domain.name.>  CLASS  SOA  <hostname.domain.name.>
<mailbox.domain.name>  (  
    <serial-number>
    <refresh>
    <retry>
    <expire>
    <negative-caching>  )
```

253.253.192.in-addr.arpa.
Pointer (PTR) records

• Create pointer (PTR) records for each IP address

131 IN PTR svc00.apnic.net.
A reverse zone example

$ORIGIN 1.168.192.in-addr.arpa.
@ 3600 IN SOA test.company.org. (sys\admin.company.org.
 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. ttl

 NS ns.company.org.
 NS ns2.company.org.

 1 PTR gw.company.org.
 router.company.org.

 2 PTR ns.company.org.

;auto generate: 65 PTR host65.company.org
$GENERATE 65-127 $ PTR host$.company.org.
Setting up the primary nameserver

- Add an entry specifying the primary server to the \texttt{named.conf} file

\begin{verbatim}
zone "<domain-name>" in {
 type master;
 file "<path-name>";
};
\end{verbatim}

- \texttt{<type master>}
 - Define the name server as the primary

- \texttt{<path-name>}
 - location of the file that contains the zone records
Setting up the secondary nameserver

- Add an entry specifying the primary server to the `named.conf` file

```plaintext
zone "<domain-name>" in {
  type slave;
  file "<path-name>";
  Masters { <IP address> ; };
};
```

- `<type slave>` defines the name server as the secondary
- `<ip address>` is the IP address of the primary name server
- `<domain-name>` is same as before
- `<path-name>` is where the back-up file is
Reverse delegation requirements

- **/24 Delegations**
 - Address blocks should be assigned/allocated
 - At least two name servers

- **/16 Delegations**
 - Same as /24 delegations
 - APNIC delegates entire zone to member
 - Recommend APNIC secondary zone

- **< /24 Delegations**
 - Read “classless in-addr.arpa delegation”

RFC 2317
Subdomains of in-addr.arpa domain

• Example: an organisation given a /16
 – 192.168.0.0/16 (one zone file and further delegations to downstreams)
 – 168.192.in-addr.arpa zone file should have:

 0.168.192.in-addr.arpa. NS ns1.organisation0.com.
 0.168.192.in-addr.arpa. NS ns2.organisation0.com.
 .
 .
 .
Subdomains of in-addr.arpa domain

- Example: an organisation given a /20
 - 192.168.0.0/20 (a lot of zone files!) – have to do it per /24)
 - Zone files

 0.168.192.in-addr.arpa.
 1.168.192.in-addr.arpa.
 2.168.192.in-addr.arpa.
 ...
 ...
 15.168.192.in-addr.arpa.
APNIC & ISPs responsibilities

• APNIC
 – Manage reverse delegations of address block distributed by APNIC
 – Process organisations requests for reverse delegations of network allocations

• Organisations
 – Be familiar with APNIC procedures
 – Ensure that addresses are reverse-mapped
 – Maintain nameservers for allocations
 • Minimise pollution of DNS
Questions ?