SANOG 10 Workshop
August 29-2 2007
New Delhi, India
Overview

- What is network operations and management?
- Why network management?
- The Network Operation Center
- Network monitoring systems and tools
- Statistics and accounting tools
- Fault/problem management
- Ticket systems
- Configuration management & monitoring
- The big picture...
What is network management?

- **System & Service monitoring**
 Reachability, availability
- **Resource measurement/monitoring**
 Capacity planning, availability
- **Performance monitoring (RTT, throughput)**
- **Statistics & Accounting/Metering**
- **Fault Management**
 Fault detection, troubleshooting, and tracking
 Ticketing systems, helpdesk
- **Change management & configuration monitoring**
What we don’t cover...

- **Provisioning**
 (processes associated with allocation and configuration of resources)

- **Security aspects**
 Basic security is proper administration and management!
Why network management?

- Make sure the network is up and running. Need to monitor it.
 - Deliver projected SLAs (Service Level Agreements)
 - Depends on policy
 - What does your management expect?
 - What do your users expect?
 - What do your customers expect?
 - What does the rest of the Internet expect?
 - Is 24x7 good enough?
 - There's no such thing as 100% uptime
Why network management?

- What does it take to deliver 99.9%?
 - 30.5 x 24 = 762 hours a month
 - \((762 - (762 \times 0.999)) \times 60 = 45\) minutes max of downtime a month!

- Need to shut down 1 hour / week?
 - \((762 - 4) / 762 \times 100 = 99.4\)%
 - Remember to take planned maintenance into account in your calculations, and inform your users/customers if they are included/excluded in the SLA

- How is availability measured?
 - In the core? End-to-end? From the Internet?
Why network management? - 3

- Know when to upgrade
 - Is your bandwidth usage too high?
 - Where is your traffic going?
 - Do you need to get a faster line, or more providers?
 - Is the equipment too old?

- Keep an audit trace of changes
 - Record all changes
 - Makes it easier to find cause of problems due to upgrades and configuration changes

- Where to consolidate all these functions?
 - In the Network Operation Center (NOC)
The Network Operations Center (NOC)

- Where it all happens
 Coordination of tasks
 Status on network and services
 Fielding of network-related incidents and complaints
 Where the tools reside ("NOC server")

- One of the goals of this workshop...
 Build a NOC box
 It will be the most important machine on your network
 We will do this during the week, by installing, and configuring, various tools to help in network monitoring and management.
Two kinds of tools

Diagnostic tools - used to test connectivity, ascertain that a location is reachable, or a device is up - usually active tools.

Monitoring tools - tools running in the background ("daemons" or services), which collect events, but can also initiate their own probes (using diagnostic tools), and recording the output, in a scheduled fashion.
Network monitoring systems and tools - 2

- **Active tools**
 - Command line tools
 - Ping - test connectivity to a host
 - Traceroute - show path to a host
 - MTR - combination of ping + traceroute

- **Automated tools**
 - SmokePing - record and graph latency to a set of hosts, using ICMP (Ping) or other protocols
 - MRTG - record and graph bandwidth usage on a switch port or network link, at regular intervals
Network monitoring systems and tools - 3

• Monitoring tools
 Nagios - server and service monitor
 - Can monitor pretty much anything
 - HTTP, SMTP, DNS, Disk space, CPU usage, ...
 - Easy to write new plugins (extensions)
 Basic scripting skills are required to develop simple monitoring jobs - Perl, Shell script...
 Many good Open Source tools
 - Zabbix, ZenOSS, Hyperic, ...

• Use them to monitor reachability and latency in your network
 Parent-child dependency mechanisms are very useful!
Network monitoring systems and tools - 4

- Monitor your critical Network Services
 - DNS
 - Radius/LDAP/SQL
 - SSH to routers
- How will you be notified?
- Don't forget log collection!
 - Every network device (and UNIX and Windows servers as well) can report system events using syslog
 - You MUST collect and monitor your logs!
 - Not doing so is one of the most common mistakes when doing network monitoring
Network Management Protocols

• SNMP – Simple Network Management Protocol
 Industry standard, hundreds of tools exist to exploit it
 Present on any decent network equipment
 ➔ Network throughput, errors, CPU load, temperature, ...
 UNIX and Windows implement this as well
 ➔ Disk space, running processes, ...

• SSH and telnet
 It's also possible to use scripting to automate monitoring of hosts and services
• Traffic accounting
 what is your network used for, and how much
Useful for Quality of Service, detecting abuses, and billing (metering)
Dedicated protocol: NetFlow
Identify traffic "flows": protocol, source, destination, bytes
Different tools exist to process the information
 → Flowtools, flowc
 → NFSen
 → ...
Fault & problem management

- Is the problem transient?
 Overload, temporary resource shortage

- Is the problem permanent?
 Equipment failure, link down

- How do you detect an error?
 Monitoring!
 Customer complaints

- A ticket system is essential
 Open ticket to track an event (planned or failure)
 Define dispatch/escalation rules
 → Who handles the problem?
 → Who gets it next if no one is available?
Ticketing systems

• Why are they important?
 Track all events, failures and issues
• Focal point for helpdesk communication
• Use it to track all communications
 Both internal and external
• Events originating from the outside:
 Customer complaints
• Events originating from the inside:
 System outages (direct or indirect)
 Planned maintenance / upgrade - Remember to notify your customers!
Ticketing systems - 2

- Use ticket system to follow each case, including internal communication between technicians.
- Each case is assigned a case number.
- Each case goes through a similar life cycle:
 - New
 - Open
 - ... (omitted)
 - Resolved
 - Closed
Ticketing systems - 3

- **Workflow**

```
(ticket system) T
query
from ____________
customer
| __________ to support __________> support
| ___ discuss internally ___ ---> support
| __ tech ___ ---> fix problem
| __________ report fix __________ tech
| ___ respond to customer ___ ---> support

customer __________
```
Ticketing systems - 4

- Some ticketing software systems: Trac, RT
- We’ll be looking at using Trac later in the workshop
Configuration management & monitoring

- Record changes to equipment configuration, using revision control (also for configuration files)
- Inventory management (equipment, IP addresses, interfaces, ...)
- Use version control! As simple as:
 "cp named.conf named.conf.20070827-01"
- For plain configuration files: CVS Mercurial
• Traditionally, used for source code (programs)
• Works well for any text-based configuration files
 Also for binary files, but less easy to see differences
• For network equipment:
 RANCID (Automatic Cisco configuration retrieval and archiving, also for other equipment types)
Big picture

- Monitoring
- Data collection
- Accounting

- Change control & monitoring

- NOC Tools
- Ticket system

- Capacity planning
- Availability (SLAs)
- Trends
- Detect problems

- Improvements
- Upgrades

- User complaints
- Requests

- Fix problems

Notifications
Questions ?