Network Operations and Network Management

Network Management Workshop
intERlab at AIT
Thailand
March 11-15, 2008
Overview

- What is network operations and management?
- Why network management?
- The Network Operation Center
- Network monitoring systems and tools
- Statistics and accounting tools
- Fault/problem management
- Ticket systems
- Configuration management & monitoring
- The big picture...
What is network management?

- System & Service monitoring
 - Reachability, availability
- Ressource measurement/monitoring
 - Capacity planning, availability
- Perf. monitoring (RTT, throughput)
- Statistics & Accounting/Metering
- Fault Management
 - Fault detection, troubleshooting, and tracking
 - Ticketing systems, helpdesk
- Change management & configuration monitoring
What we don't cover...

• Provisioning
 - (processes associated with allocation and configuration of resources)

• Security aspects
 - Basic security is proper administration and management!
Why network management?

- Make sure the network is up and running. Need to monitor it.
- Deliver projected SLAs (Service Level Agreements)
- Depends on policy
 - What does your management expect?
 - What do your users expect?
 - What do your customers expect?
 - What does the rest of the Internet expect?
- Is 24x7 good enough?
 - There's no such thing as 100% uptime
Why network management? - 2

• What does it take to deliver 99.9%?
 - 30.5 x 24 = 762 hours a month
 - (762 - (762 x .999)) x 60 = 45 minutes max of downtime a month!

• Need to shutdown 1 hour / week?
 - (762 - 4) / 762 x 100 = 99.4%
 - Remember to take planned maintenance into account in your calculations, and inform your users/customers if they are included/excluded in the SLA

• How is availability measured?
 - In the core? End-to-end? From the Internet?)
Why network management? - 3

- Know when to upgrade
 - Is your bandwidth usage too high?
 - Where is your traffic going?
 - Do you need to get a faster line, or more providers?
 - Is the equipment too old?

- Keep an audit trace of changes
 - Record all changes
 - Makes it easier to find cause of problems due to upgrades and configuration changes

- Where to consolidate all these functions?
 - In the Network Operation Center (NOC)
The Network Operations Center (NOC)

- Where it all happens
 - Coordination of tasks
 - Status on network and services
 - Fielding of network-related incidents and complaints
 - Where the tools reside ("NOC server")

- One of the goals of this workshop...
 - Build a NOC box
 - It will be the most important machine on your network
 - We will do this during the week, by installing, and configuring, various tools to help in network monitoring and management.
Network monitoring systems and tools

- Two kinds of tools
 - Diagnostic tools – used to test connectivity, ascertain that a location is reachable, or a device is up – usually active tools
 - Monitoring tools – tools running in the background ("daemons" or services), which collect events, but can also initiate their own probes (using diagnostic tools), and recording the output, in a scheduled fashion.
Network monitoring systems and tools - 2

• Active tools
 - Ping – test connectivity to a host
 - Traceroute – show path to a host
 - MTR – combination of ping + traceroute
 - SNMP collectors (polling)

• Passive tools
 - log monitoring, SNMP trap receivers

• Automated tools
 - SmokePing – record and graph latency to a set of hosts, using ICMP (Ping) or other protocols
 - MRTG – record and graph bandwidth usage on a switch port or network link, at regular intervals
Network monitoring systems and tools - 3

- **Network & Service Monitoring tools**
 - Nagios – server and service monitor
 - Can monitor pretty much anything
 - HTTP, SMTP, DNS, Disk space, CPU usage, ...
 - Easy to write new plugins (extensions)
 - Basic scripting skills are required to develop simple monitoring jobs – Perl, Shellscript...
 - Many good Open Source tools
 - Zabbix, ZenOSS, Hyperic, ...

- Use them to monitor reachability and latency in your network
 - Parent-child dependency mechanisms are very useful!
Monitor your critical Network Services
- DNS
- Radius/LDAP/SQL
- SSH to routers

How will you be notified?

Don't forget log collection!
- Every network device (and UNIX and Windows servers as well) can report system events using syslog
- You MUST collect and monitor your logs!
- Not doing so is one of the most common mistakes when doing network monitoring
Network Management Protocols

- **SNMP – Simple Network Management Protocol**
 - Industry standard, hundreds of tools exist to exploit it
 - Present on any decent network equipment
 - Network throughput, errors, CPU load, temperature, ...
 - UNIX and Windows implement this as well
 - Disk space, running processes, ...

- **SSH and telnet**
 - It's also possible to use scripting to automate monitoring of hosts and services
• **Traffic accounting**
 - what is your network used for, and how much
 - Useful for Quality of Service, detecting abuses, and billing (metering)
 - Dedicated protocol: NetFlow
 - Identify traffic "flows": protocol, source, destination, bytes
 - Different tools exist to process the information
 → Flowtools, flowc
 → NFSen
 → ...
Fault & problem management

- Is the problem transient?
 - Overload, temporary resource shortage
- Is the problem permanent?
 - Equipment failure, link down
- How do you detect an error?
 - Monitoring!
 - Customer complaints
- A ticket system is essential
 - Open ticket to track an event (planned or failure)
 - Define dispatch/escalation rules
 - Who handles the problem?
 - Who gets it next if no one is available?
Ticketing systems

- Why are they important?
 - Track all events, failures and issues
- Focal point for helpdesk communication
- Use it to track all communications
 - Both internal and external
- Events originating from the outside:
 - Customer complaints
- Events originating from the inside:
 - System outages (direct or indirect)
 - Planned maintenance / upgrade – Remember to notify your customers!
Ticketing systems - 2

- Use ticket system to follow each case, including internal communication between technicians.
- Each case is assigned a case number.
- Each case goes through a similar life cycle:
 - New
 - Open
 - ...
 - Resolved
 - Closed
Ticketing systems - 3

- **Workflow:**

<table>
<thead>
<tr>
<th>Ticket System</th>
<th>Helpdesk</th>
<th>Tech</th>
<th>Eqpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>query from customer</td>
<td>request</td>
<td>acc.</td>
<td>comm</td>
</tr>
<tr>
<td>customer</td>
<td>respond</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Some ticketing software systems:
 - Trac
 - RT
• We'll be looking at using Trac later in the workshop
• Record changes to equipment configuration, using revision control (also for configuration files)
• Inventory management (equipment, IPs, interfaces, ...)
• Use version control!
 - As simple as:
 "cp named.conf named.conf.20070827-01"
• For plain configuration files:
 - CVS, Subversion
 - Mercurial
• Traditionnally, used for source code (programs)
• Works well for any text-based configuration files
 - Also for binary files, but less easy to see differences
• For network equipment:
 - RANCID (Automatic Cisco configuration retrieval and archiving, also for other equipment types)
Big picture

How it all fits together

- Monitoring
- Data collection
- Accounting
- Capacity planning
- Availability (SLAs)
- Trends
- Detect problems

- Change control & monitoring
- Improvements
- Upgrades

- NOC Tools
- Ticket system
- User complaints
- Requests

- Fix problems
- Notifications

- Ticket system
- Ticket
- Change control & monitoring
- Improvements
- Upgrades

- User complaints
- Requests
- Fix problems
- Notifications
- Ticket system
Questions ?