
nsrc@intERLab 2008
Bangkok, Thailand

Scripting
Tools, languages and the Shell

intERLab at AIT
Network Management Workshop
March 11­15 – Bangkok, Thailand

Hervey Allen

nsrc@intERLab 2008
Bangkok, Thailand

Languages

Interpreted
bash/sh, Perl, PHP, Python,

Ruby

Compiled
C, C++, Java

nsrc@intERLab 2008
Bangkok, Thailand

Tools

● sed: Stream EDitor
● awk: Pattern scanning & processing
● dc: Arbitrary precision calculator
● bc: Arbitrary precision calculator

 language.
● tr: Translate or delete characters
● grep: Print lines matching a pattern

nsrc@intERLab 2008
Bangkok, Thailand

The Shell (bash)
● export
● printenv
● ~/.bashrc
● ~/.profile
● /etc/profile
● /etc/bash.bashrc
● /etc/skel (in Ubuntu)

nsrc@intERLab 2008
Bangkok, Thailand

The Shell cont.

By default, on Ubuntu, we use the
Bourne Again SHell, or BASH.

The shell is your interface to the kernel.

Programs use the shell to determine
their environment.

Your shell environment can be
customized. We'll go over how it's
configured in Ubuntu.

nsrc@intERLab 2008
Bangkok, Thailand

The Shell cont.

Flow of bash execution at startup:
Interactive login

1. /etc/profile

2. ~/.profile

3. ~/.bashrc

This is true for Ubuntu. See “man bash”
for standard startup sequence.

We'll go through this now...

nsrc@intERLab 2008
Bangkok, Thailand

The Shell cont.

Flow of bash execution at startup:
Interactive shell, no login

1. /etc/bash.bashrc

2. ~/.bashrc

Non-interactive startup, run a script

1. Script looks for variable BASH_ENV

2. If it is set and is a file bash does this:
if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi

nsrc@intERLab 2008
Bangkok, Thailand

Using the Shell
Command Line Interpreter or CLI

To understand scripts let's practice a bit
with the CLI. At the shell prompt try:

cd; echo “Hello, World” > test.txt;
cp test.txt test.txt.bak; vi test.txt

The above is all on one line.

What happened?

Now try this:
cp test.txt $(date +%F)test.txt

nsrc@intERLab 2008
Bangkok, Thailand

Using the Shell
In a file

Now create a new file and place the
some of our previous command in it:

cd

vi newscript

echo “Hello world” > hello.txt

cp hello.txt hello.txt.bak

cat hello.txt+hello.txt.bak > new.txt

cat new.txt

:wq

nsrc@intERLab 2008
Bangkok, Thailand

Using the Shell
In a file

Now we can execute those commands in
the order in which they appear in the
file by doing this:
bash newscript

sh newscript

. newscript

nsrc@intERLab 2008
Bangkok, Thailand

Using the Shell
As a shell script

Now we can take the last step and start
to create self-contained scripts that run
on their own.

We'll need to do two things:

1. Specify the CLI to use, and

2. Make our file executable

nsrc@intERLab 2008
Bangkok, Thailand

The “Shebang”

To specify that a file is to become a shell
script you specify the interpreter like
this at the very start of the file:

#!/bin/sh
or

#!/bin/bash

etc...

This is known as the “Shebang” (#!).

nsrc@intERLab 2008
Bangkok, Thailand

What's Next?

Now let's create a very simple shell
script. This will simply echo back what
you enter on the command line:
#!/bin/sh

echo $1

Enter this in a file new.sh, then do:
chmod 755 new.sh

nsrc@intERLab 2008
Bangkok, Thailand

Run your script

To run the script do:
./new.sh text

./new.sh “text with spaces...”

Try updating the script to echo two, or
more separated items on the command
line.

nsrc@intERLab 2008
Bangkok, Thailand

When Not to Use

A long'ish list...
Resource-intensive tasks, especially where speed is a factor (sorting, hashing, etc.)

Procedures involving heavy-duty math operations, especially floating point arithmetic
arbitrary precision calculations, or complex numbers

Cross-platform portability required

Complex applications, where structured programming is a necessity (need type-checking of
variables, function prototypes, etc.)

Project consists of subcomponents with interlocking dependencies

Extensive file operations required (Bash is limited to serial file access, and that only in a
particularly clumsy and inefficient line-by-line fashion)

Need native support for multi-dimensional arrays or data structures, such as linked lists or
trees

Need to generate or manipulate graphics or GUIs

Need direct access to system hardware or port or socket I/O

nsrc@intERLab 2008
Bangkok, Thailand

Resources

The books you received in class:

Classic Shell Scripting

The Bash Cookbook

The on-line Advanced Bash Scripting
Guide, available at:

http://www.tldp.org/LDP/abs/html/

