
Nagios® Version 2.x
Documentation

Copyright © 1999-2006 Ethan Galstad
www.nagios.org

Last Updated: 11-27-2006

[Table of Contents]

Nagios and the Nagios logo are registered trademarks of Ethan Galstad. All other trademarks,
servicemarks, registered trademarks, and registered servicemarks mentioned herein may be the
property of their respective owner(s). The information contained herein is provided AS IS with NO
WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY,
AND FITNESS FOR A PARTICULAR PURPOSE.

1

http://www.nagios.org/
http://www.nagios.org/

Version 2.0 Documentation

Table of Contents

About

What is Nagios?
System requirements
Licensing
Downloading the latest version
Other monitoring utilities

Release Notes

What’s new in this version
Change log

Support

Self-service and commercial support

Getting Started

Advice for beginners

Installing Nagios

Compiling and installing Nagios
Setting up the web interface

Configuring Nagios

Configuration overview
Main configuration file options
Object configuration file options
CGI configuration file options
Configuring authorization for the CGIs

Running Nagios

Verifying the configuration
Starting Nagios
Stopping and restarting Nagios

Nagios Plugins

Standard plugins
Writing your own plugins

2

http://www.nagios.org/
http://www.nagios.org/support/

Nagios Addons

NRPE - Daemon and plugin for executing plugins on remote hosts
NSCA- Daemon and client program for sending passive check results across the network

Theory Of Operation

Determing status and reachability of network hosts
Network outages
Notifications
Plugin theory
Service check scheduling
State types
Time periods

Advanced Topics

Event handlers
External commands
Indirect host and service checks
Passive service checks
Volatile services
Service and host result freshness checks
Distributed monitoring
Redundant and failover monitoring
Detection and handling of state flapping
Service check parallelization
Notification escalations
Monitoring service and host clusters
Host and service dependencies
State stalking
Performance data
Scheduled host and service downtime
Using the embedded Perl interpreter
Adaptive monitoring
Object inheritance
Time-saving tips for object definitions

Integration With Other Software

SNMP Traps
TCP Wrappers

Miscellaneous

Securing Nagios
Tuning Nagios for maximum performance
Using the nagiostats utility
Using macros in commands
Information on the CGIs
Custom CGI headers and footers

3

About Nagios®

What Is This?

Nagios® is a system and network monitoring application. It watches hosts and services that you specify,
alerting you when things go bad and when they get better.

Nagios was originally designed to run under Linux, although it should work under most other unices as
well.

Some of the many features of Nagios® include:

Monitoring of network services (SMTP, POP3, HTTP, NNTP, PING, etc.)

Monitoring of host resources (processor load, disk usage, etc.)

Simple plugin design that allows users to easily develop their own service checks

Parallelized service checks

Ability to define network host hierarchy using "parent" hosts, allowing detection of and distinction
between hosts that are down and those that are unreachable

Contact notifications when service or host problems occur and get resolved (via email, pager, or
user-defined method)

Ability to define event handlers to be run during service or host events for proactive problem
resolution

Automatic log file rotation

Support for implementing redundant monitoring hosts

Optional web interface for viewing current network status, notification and problem history, log
file, etc.

System Requirements

The only requirement of running Nagios is a machine running Linux (or UNIX variant) and a C compiler. You
will probably also want to have TCP/IP configured, as most service checks will be performed over the
network.

You are not required to use the CGIs included with Nagios. However, if you do decide to use them, you
will need to have the following software installed...

1. A web server (preferrably Apache)

2. Thomas Boutell’s gd library version 1.6.3 or higher (required by the statusmap and trends CGIs)

Licensing

Nagios® is licensed under the terms of the GNU General Public License Version 2 as published by the
Free Software Foundation. This gives you legal permission to copy, distribute and/or modify Nagios
under certain conditions. Read the ’LICENSE’ file in the Nagios distribution or read the online version of
the license for more details.

Nagios® is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF
DESIGN, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgements

4

http://www.linux.com/
http://www.apache.org/
http://www.boutell.com/gd
http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Several people have contributed to Nagios by either reporting bugs, suggesting improvements, writing
plugins, etc. A list of some of the many contributors to the development of Nagios can be found at
http://www.nagios.org.

Downloading The Latest Version

You can check for new versions of Nagios at http://www.nagios.org.

Nagios and the Nagios logo are trademarks of Ethan Galstad. All other trademarks, servicemarks,
registered trademarks, and registered servicemarks may be the property of their respective owner(s).

5

http://www.nagios.org/
http://www.nagios.org/

What’s New in Version 2.0

Important: Make sure you read through the documentation before sending a question to the mailing
lists.

Change Log

The change log for Nagios can be found online at http://www.nagios.org/development/changelog.php
or in the Changelog file in the root directory of the source code distribution.

Known Issues

There is a known issue that can affect Nagios 2.0 on FreeBSD systems. Hopefully this problem can be
fixed in a 2.x release...

1. FreeBSD and threads. On FreeBSD there’s a native user-level implementation of threads called
’pthread’ and there’s also an optional ports collection ’linuxthreads’ that uses kernel hooks. Some
folks from Yahoo! have reported that using the pthread library causes Nagios to pause under heavy
I/O load, causing some service check results to be lost. Switching to linuxthreads seems to help this
problem, but not fix it. The lock happens in liblthread’s __pthread_acquire() - it can’t ever acquire
the spinlock. It happens when the main thread forks to execute an active check. On the second fork
to create the grandchild, the grandchild is created by fork, but never returns from liblthread’s fork
wrapper, because it’s stuck in __pthread_acquire(). Maybe some FreeBSD users can help out with
this problem.

Changes and New Features

1. Macro Changes - Macros have undergone a major overhaul. You will have to update most of your
command definitions to match the new macros. Most macros are now available as environment
variables. Also, "on-demand" host and service macros have been added. See the documentation on
macros for more information.

2. Hostgroup Changes

Hostgroup escalations removed - Hostgroup escalations have been removed. Their
functionality can be duplicated by using the hostgroup_name directive in hostgroup definitions.

Member directive changes - Hostgroup definitions can now contain multiple members
directives, which should make editing the config files easier when you have a lot of member
hosts. Alternatively, you may use the hostgroups directive in host definitions to specify what
hostgroup(s) a particular host is a member of.

Contact group changes - The contact_groups directive has been moved from hostgroup
definitions to host definitions. This was done in order to maintain consistency with the way
service contacts are specified. Make sure to update your config files!

Authorization changes - Authorization for access to hostgroups in the CGIs has been changed.
You must now be authorized for all hosts that are members of the hostgroup in order to be
authorized for the hostgroup.

3. Host Changes

Host freshness checking - Freshness checking has been added for host checks. This is
controlled by the check_host_freshness option, along with the check_freshness directive in host
definitions.

OCHP Command - Host checks can now be obsessed over, just as services can be. The OCHP
command is run for all hosts that have the obsess_over_host directive enabled in their host
definition.

4. Host Check Changes

Regularly scheduled checks - You can now schedule regular checks of hosts by using the

6

http://www.nagios.org/development/changelog.php

check_interval directive in host definitions. NOTE: Listen up! You should use regularly
scheduled host checks rather sparingly. They are not necessary for normal operation (on-demand checks

are already performed when necessary) and can negatively affect performance if used
improperly. You’ve been warned.

Passive host checks - Passive host checks are now supported if you’ve enabled them with the
accept_passive_host_checks option in the main config file and the accept_passive_host_checks
directive in the host definition. Passive host checks can make setting up redundant or
distributed monitoring environments easier. NOTE: There are some problems with passive
host checks that you should be aware of - read more about them here.

5. Retention Changes

Retention of scheduling information - Host and service check scheduling information (next
check times) can now be retained across program restarts using the
use_retained_scheduling_info directive.

Smarter retention - Values of various host and service directives that can be retained across
program restarts are now only retained if they are changed during runtime by an external
command. This should make things less confusing to people when they try and modify host
and service directive values and then restart Nagios, expecting to see some changes.

More stuff retained - More information is now retained across program restarts, including flap
detection history. Hoorah!

6. Extended Info Changes

New location - Extended host info and service info definitions are now stored in object config
files along with host definitions, etc. As a result, extended info definitions are now parsed and
validated by the Nagios daemon before startup.

New directives - Extended host info and service info definitions now have two new directives:
notes and action_url.

7. Embedded Perl Changes

p1.pl location - You can now specify the location of the embedded Perl "helper" file (p1.pl)
using the p1_file directive.

8. Notification Changes

Flapping notifications - Notifications are now sent out when flapping starts and stops for hosts
and services. This feature can be controlled using the f option in the notification_options for
contacts, hosts and services.

Better logic - Notification logic has been improved a bit. This should prevent recovery
notifications getting sent out when no problem notification was sent out to begin with.

Service notifications - Before service notifications are sent out, notification dependencies for
the host are now checked. If host notifications are not deemed to be viable, notifications for the
service will not be sent out either.

Escalation options - Time period and state options have been added to host and service
escalations. This gives you more control in determining when escalations can be used. More
information on escalations can be found here.

9. Service Groups Added - Service groups have now been added. They allow you to group services
together for display purposes in the CGIs and can be referenced in service dependency and service
escalation definitions to make configuration a bit easier.

10. Triggered Downtime Added - Support for what’s called "triggered" downtime has been added for
host and service downtime. Triggered downtime allows you to define downtime that should start at
the same time another downtime starts (very useful for scheduling downtime for child hosts when
the parent host is scheduled for flexible downtime). More information on triggered downtime can
be found here.

11. New Stats Utility - A new utility called ’nagiostats’ is now included in the Nagios distribution. Its a
command-line utility that allows you to view current statistics for a running Nagios process. It can
also produce data compatible with MRTG, so you can graph statistical information. More
information on how to use the utility can be found here.

7

12. Adaptive Monitoring - You can now change certain attributes relating to host and service checks
(check command, check interval, max check attempts etc.) during runtime by submitting the appropriate
external commands. This kind of adaptive monitoring will probably not be of much use to the majority
of users out there, but it does provide a way for doing some neat stuff. More information on adaptive
monitoring can be found here.

13. Performance Data Changes - The methods for processing performance data have changed slightly.
You can now process performance data by executing external commands and/or writing to files without
recompiling Nagios. Read the documentation on performance data for more information.

14. Native DB Support Dropped - Native support for storing various types of data (status, retention,
comment, downtime, etc.) in MySQL and PostgreSQL has been dropped. Stop whining. I expect
someone will develop an alternative using the new event broker sometime in the near future. Besides,
DB support was not well implemented and dropping native DB support will make things easier for
newbies to understand (one less thing to figure out).

15. Event Broker API - An API has been created to allow individual developers to create addons that
integrate with the core Nagios daemon. Documentation on the event broker API will be created as the
2.x code matures and will be available on the Nagios website.

16. Misc Changes

All commands can contain arguments - All command types (host checks, notifications,
performance data processors, event handlers, etc.) can contain arguments (seperated from the
command name by ! characters). Arguments are substituted in the command line using $ARGx
macros.

Config directory recursion - Nagios now recursively processes all config files found in
subdirectories of the directories specified by the cfg_dir directive.

Old config file support dropped - Support for older (non-template) style object and extended
info config files has been dropped.

Faster searches - Objects are now stored in a chained hash in order to speed searches. This
should greatly improve the performance of the CGIs.

Worker threads - A few worker threads have been added in order to artificially buffer data for
the external command file and the internal pipe used to process service check results. This
should substantially increase performance in larger setups.

Logging changes - Initial host and service states are now logged a bit differently. Also, the
initial states of all hosts and services are logged immediately after all log rotations. This should
help with all those "undetermined time" problems in the availability and trends CGIs.

Cached object config file - An object cache file is now created by Nagios at startup. It should
help speed up the CGIs a bit and allow you to edit you object config files while Nagios is
running without affecting the CGI output.

Initial check limits - You can now specify timeframes in which the initial checks of all hosts
and services should be performed after Nagios start. These timeframes are controlled by the
max_host_check_spread and max_service_check_spread variables.

"Sticky" acknowledgements - You can now designate host and service acknowledgements as
being "sticky" or not. Sticky acknowledgements suppress notifications until a host or service
fully recovers to an UP or OK state. Non-sticky acknowledgements only suppress notifications
until a host or service changes state.

Changed in checking clusters - The way you monitor service and host "clusters" has now
changed and is more reliable than before. This is due to the incorporation of on-demand macros
and a new plugin (check_cluster2). Read more about checking clusters here.

Regular expression matching - Regular expression matching of various object directives can be
enabled using the use_regexp_matching and use_true_regexp_matching variables. Information
on how and where regular expression matching can be used can be found in the template tips
and tricks documentation.

Service pseudo-states - Support for some redundant service pseudo-states have been removed
from the status CGI. This will affect any hardcoded URLs which use the servicestatustypes=X
parameter for the CGI. Check include/statusdata.h for the new list of service states that you can

8

use.

Freshness check changes - The freshness check logic has been changed slightly. Freshness
checks will not occur if the current time is not valid for the host or service check_timeperiod.
Also, freshness checks will no longer occur if both the host or service check_interval and
freshness_threshold variables are set to zero (0).

9

Advice for Beginners

Congrats on choosing to try Nagios! Nagios is quite powerful and flexible, but unfortunately its not very
friendly to newbies. Why? Because it takes a lot of work to get it installed and configured properly. That
being said, if you stick with it and manage to get it up and running, you’ll never want to be without it. :-)
Here are some very important things to keep in mind for those of you who are first-time users of Nagios:

1. Relax - its going to take some time. Don’t expect to be able to compile Nagios and start it up right
off the bat. Its not that easy. In fact, its pretty difficult. If you don’t want to spend time learning how
things work and getting things running smoothly, don’t bother using this software. Instead, pay
someone to monitor your network for you or hire someone to install Nagios for you. :-)

2. Read the documentation. Nagios is difficult enough to configure when you’ve got a good grasp of
what’s going on, and nearly impossible if you don’t. Do yourself a favor and read before blindly
attempting to install and run Nagios. If you’re the type who doesn’t want to take the time to read
the documentation, you’ll probably find that others won’t find the time to help you out when you
have problems. RTFM.

3. Use the sample config files. Sample configuration files are provided with Nagios. Look at them,
modify them for your particular setup and test them! The sample files are just that - samples.
There’s a very good chance that they won’t work for you without modifications. Sample config files
can be found in the sample-config/ subdirectory of the Nagios distribution.

4. Seek the help of others. If you’ve read the documentation, reviewed the sample config files, and are
still having problems, try sending a descriptive email message describing your problems to the
nagios-users mailing list. Due to the amount of work that I have to do for this project, I am unable to
answer most of the questions that get sent directly to me, so your best source of help is going to be
the mailing list. If you’ve done some background reading and you provide a good problem
description, odds are that someone will give you some pointers on getting things working properly.

10

Installing Nagios

Important: Installing and configuring Nagios is rather involved. You can’t just compile the binaries, run
the program and sit back. There’s a lot to setup before you can actually start monitoring anything. Relax,
take your time and read all the documentation - you’re going to need it. Okay, let’s get started...

Become Root

You’ll need to have root access to install Nagios as described in this documentation, as you’ll be creating
users and group, modifying your web server config files, etc. Either login as root before you begin or use
the su command to change to the root user from another account.

Getting The Latest Version

You can download the latest version of Nagios from http://www.nagios.org/download.

Unpacking The Distribution

To unpack the Nagios distribution, use the following command:

tar xzf nagios-version.tar.gz

When you have finished executing these commands, you should find a nagios-version directory that has
been created in your current directory. Inside that directory you will find all the files that comprise the
core Nagios distribution.

Create Nagios User/Group

You’re probably going to want to run Nagios under a normal user account, so add a new user (and
group) to your system with the following command (this will vary depending on what OS you’re
running):

adduser nagios

Create Installation Directory

Create the base directory where you would like to install Nagios as follows...

mkdir /usr/local/nagios

Change the owner of the base installtion directory to be the Nagios user and group you added earlier as
follows:

chown nagios.nagios /usr/local/nagios

Identify Web Server User

You’re probably going to want to issue external commands (like acknowledgements and scheduled
downtime) from the web interface. To do so, you need to identify the user your web server runs as
(typically apache, although this may differ on your system). This setting is found in your web server
configuration file. The following command can be used to quickly determine what user Apache is
running as (paths may differ on your system):

11

http://www.nagios.org/download

grep "^User" /etc/httpd/conf/httpd.conf

Add Command File Group

Next we’re going to create a new group whose members include the user your web server is running as
and the user Nagios is running as. Let’s say we call this new group ’nagcmd’ (you can name it
differently if you wish). On RedHat Linux you can use the following command to add a new group
(other systems may differ):

/usr/sbin/groupadd nagcmd

Next, add the users that your web server and Nagios run as to the newly created group with the
following commands (I’ll assume apache and nagios are the respective users):

/usr/sbin/usermod -G nagcmd apache
/usr/sbin/usermod -G nagcmd nagios

Run the Configure Script

Run the configure script to initialize variables and create a Makefile as follows...(the last two options:
--with-command-xxx are optional, but needed if you want to issue external commands)

./configure --prefix=prefix --with-cgiurl=cgiurl --with-htmurl=htmurl --with-nagios-user=someuser
--with-nagios-group=somegroup --with-command-group=cmdgroup

Replace prefix with the installation directory that you created in the step above (default is
/usr/local/nagios)

Replace cgiurl with the actual url you will be using to access the CGIs (default is /nagios/cgi-bin). Do
NOT append a slash at the end of the url.

Replace htmurl with the actual url you will be using to access the HTML for the main interface and
documentation (default is /nagios/)

Replace someuser with the name of a user on your system that will be used for setting permissions
on the installed files (default is nagios)

Replace somegroup with the name of a group on your system that will be used for setting
permissions on the installed files (default is nagios)

Replace cmdgroup with the name of the group running the web server (default is nagios, in the
example above it was nagcmd). This will allow group members (i.e. your web server) to be able to
submit external commands to Nagios.

Compile Binaries

Compile Nagios and the CGIs with the following command:

make all

Installing The Binaries And HTML Files

Install the binaries and HTML files (documentation and main web page) with the following command:

make install

Installing An Init Script

If you wish, you can also install the sample init script to /etc/rc.d/init.d/nagios with the following
command:

12

make install-init

You may have to edit the init script to make sense with your particular OS and Nagios installation by
editing paths, etc.

Directory Structure And File Locations

Change to the root of your Nagios installation directory with the following command...

cd /usr/local/nagios

You should see five different subdirectories. A brief description of what each directory contains is given
in the table below.

Sub-Directory Contents

bin/ Nagios core program

etc/ Main, resource, object, and CGI configuration files should be put here

sbin/ CGIs

share/ HTML files (for web interface and online documentation)

var/ Empty directory for the log file, status file, retention file, etc.

var/archives Empty directory for the archived logs

var/rw Empty directory for the external command file

Installing The Plugins

In order for Nagios to be of any use to you, you’re going to have to download and install some plugins.
Plugins are usually installed in the libexec/ directory of your Nagios installation (i.e.
/usr/local/nagios/libexec). Plugins are scripts or binaries which perform all the service and host checks that
constitute monitoring. You can grab the latest release of the plugins from the Nagios downloads page or
directly from the SourceForge project page.

Setup The Web Interface

You’re probably going to want to use the web interface, so you’ll also have to read the instructions on
setting up the web interface and configuring web authentication, etc. next.

Configuring Nagios

So now you have things compiled and installed, but you still haven’t configured Nagios or defined
objects (hosts, services, etc.) that should be monitored. Information on configuring Nagios and defining
objects can be found here. There’s a lot to configure, but don’t let it discourage you - its well worth it.

13

http://www.nagios.org/download
http://sourceforge.net/projects/nagiosplug/

Setting Up The Web Interface

Notes

In these instructions I will assume that you are running the Apache web server on your machine. If you
are using some other web server, you’ll have to make changes where appropriate. I am also assuming
that you used the /usr/local/nagios as the installation prefix.

Sample Configuration

A sample Apache config file snippet is created when you run the configure script - you can find the
sample config file (named httpd.conf) in the sample-config/ subdirectory of the Nagios distribution. You
will need to add the contents of this file to your Apache configuration files before you can access the
Nagios web interface. The instructions found below detail how to manually add the appropriate
configuration entries to Apache.

Configure Aliases and Directory Options For The Web Interface

First you’ll need to create appropriate entries for the Nagios web interface (HTML and CGIs) in your
web server config file. Add the following snippet to your web server configuration file (i.e. httpd.conf),
changing it to match any directory differences on your system.

ScriptAlias /nagios/cgi-bin /usr/local/nagios/sbin

<Directory "/usr/local/nagios/sbin">
 Options ExecCGI
 AllowOverride None
 Order allow,deny
 Allow from all
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /usr/local/nagios/etc/htpasswd.users
 Require valid-user
</Directory>

Alias /nagios /usr/local/nagios/share

<Directory "/usr/local/nagios/share">
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /usr/local/nagios/etc/htpasswd.users
 Require valid-user
</Directory>

Note: The default Nagios installation expects to find the HTML files and CGIs at
http://yourmachine/nagios/ and http://yourmachine/nagios/cgi-bin/, respectively. These locations can
be changed using the --with-htmurl and --with-cgiurl options in the configure script.

Important! If you are installing Nagios on a multi-user system, you may want use CGIWrap to provide
additional security between the CGIs and the external command file. If you decide to use CGIWrap, the
ScriptAlias you’ll end up using will most likely be different from that mentioned above. More
information on doing this can be found here.

14

http://www.apache.org/
http://cgiwrap.unixtools.org/

Restart The Web Server

Once you’ve finished editing the Apache configuration file, you’ll need to restart the web server with a
command like this...

/etc/rc.d/init.d/httpd restart

Configure Web Authentication

Once you have installed the web interface properly, you’ll need to specify who can access the Nagios
web interface. Follow these instructions to do this.

Verify Your Changes

Don’t forget to check and see if the changes you made to Apache work. You should be able to point your
web browser at http://yourmachine/nagios/ and get the web interface for Nagios. The CGIs may not
display any information, but this will be remedied once you configure everything and start Nagios.

15

Configuring Nagios

Configuration Overview

There are several different configuration files that you’re going to need to create or edit before you start
monitoring anything. They are described below...

Main Configuration File

The main configuration file (usually /usr/local/nagios/etc/nagios.cfg) contains a number of directives that
affect how Nagios operates. This config file is read by both the Nagios process and the CGIs. This is the
first configuration file you’re going to want to create or edit.

Documentation for the main configuration file can be found here.

A sample main configuration file is generated automatically when you run the configure script before
compiling the binaries. Look for it either in the distribution directory or the etc/ subdirectory of your
installation. When you install the sample config files using the make install-config command, a sample
main configuration file will be placed into your settings directory (usually /usr/local/nagios/etc). The
default name of the main configuration file is nagios.cfg.

Resource File(s)

Resource files can be used to store user-defined macros. Resource files can also contain other
information (like database connection settings), although this will depend on how you’ve compiled
Nagios. The main point of having resource files is to use them to store sensitive configuration
information and not make them available to the CGIs.

You can specify one or more optional resource files by using the resource_file directive in the main
configuration file.

Object Definition Files

Object definition files are used to define hosts, services, hostgroups, contacts, contactgroups, commands,
etc. This is where you define what things you want monitor and how you want to monitor them.

Documentation for the object definition files can be found here.

CGI Configuration File

The CGI configuration file (usually /usr/local/nagios/etc/cgi.cfg) contains a number of directives that affect
the operation of the CGIs.

Documentation for the CGI configuration file can be found here.

A sample CGI configuration file is generated automatically when you run the configure script before
compiling the binaries. When you install the sample config files using the make install-config
command, the CGI configuration file will be placed in the same directory as the main and host config
files (usually /usr/local/nagios/etc). The default name of the CGI configuration file is cgi.cfg.

16

Main Configuration File Options

Notes

When creating and/or editing configuration files, keep the following in mind:

1. Lines that start with a ’#’ character are taken to be comments and are not processed

2. Variables names must begin at the start of the line - no white space is allowed before the name

3. Variable names are case-sensitive

Sample Configuration

A sample main configuration file is created in the base directory of the Nagios distribution when you
run the configure script. The default name of the main configuration file is nagios.cfg - its usually placed
in the etc/ subdirectory of you Nagios installation (i.e. /usr/local/nagios/etc/).

Index

Log file
Object configuration file
Object configuration directory
Object cache file
Resource file
Temp file
Status file
Aggregated status updates option
Aggregated status data update interval
Nagios user
Nagios group
Notifications option
Service check execution option
Passive service check acceptance option
Host check execution option
Passive host check acceptance option
Event handler option
Log rotation method
Log archive path
External command check option
External command check interval
External command file
Comment file
Downtime file
Lock file
State retention option
State retention file
Automatic state retention update interval
Use retained program state option
Use retained scheduling info option
Syslog logging option
Notification logging option
Service check retry logging option
Host retry logging option
Event handler logging option

17

Initial state logging option
External command logging option
Passive check logging option
Global host event handler
Global service event handler
Inter-check sleep time
Service inter-check delay method
Maximum service check spread
Service interleave factor
Maximum concurrent service checks
Service reaper frequency
Host inter-check delay method
Maximum host check spread
Timing interval length
Auto-rescheduling option
Auto-rescheduling interval
Auto-rescheduling window
Aggressive host checking option
Flap detection option
Low service flap threshold
High service flap threshold
Low host flap threshold
High host flap threshold
Soft service dependencies option
Service check timeout
Host check timeout
Event handler timeout
Notification timeout
Obsessive compulsive service processor timeout
Obsessive compulsive host processor timeout
Performance data processor command timeout
Obsess over services option
Obsessive compulsive service processor command
Obsess over hosts option
Obsessive compulsive host processor command
Performance data processing option
Host performance data processing command
Service performance data processing command
Host performance data file
Service performance data file
Host performance data file template
Service performance data file template
Host performance data file mode
Service performance data file mode
Host performance data file processing interval
Service performance data file processing interval
Host performance data file processing command
Service performance data file processing command
Orphaned service check option
Service freshness checking option
Service freshness check interval
Host freshness checking option
Host freshness check interval
Date format

18

Illegal object name characters
Illegal macro output characters
Regular expression matching option
True regular expression matching option
Administrator email address
Administrator pager

Log File

Format: log_file=<file_name>

Example: log_file=/usr/local/nagios/var/nagios.log

This variable specifies where Nagios should create its main log file. This should be the first variable that
you define in your configuration file, as Nagios will try to write errors that it finds in the rest of your
configuration data to this file. If you have log rotation enabled, this file will automatically be rotated
every hour, day, week, or month.

Object Configuration File

Format: cfg_file=<file_name>

Example:
cfg_file=/usr/local/nagios/etc/hosts.cfg
cfg_file=/usr/local/nagios/etc/services.cfg
cfg_file=/usr/local/nagios/etc/commands.cfg

This directive is used to specify an object configuration file containing object definitions that Nagios
should use for monitoring. Object configuration files contain definitions for hosts, host groups, contacts,
contact groups, services, commands, etc. You can seperate your configuration information into several
files and specify multiple cfg_file= statements to have each of them processed.

Object Configuration Directory

Format: cfg_dir=<directory_name>

Example:
cfg_dir=/usr/local/nagios/etc/commands
cfg_dir=/usr/local/nagios/etc/services
cfg_dir=/usr/local/nagios/etc/hosts

This directive is used to specify a directory which contains object configuration files that Nagios should
use for monitoring. All files in the directory with a .cfg extension are processed as object config files.
Additionally, Nagios will recursively process all config files in subdirectories of the directory you
specify here. You can seperate your configuration files into different directories and specify multiple
cfg_dir= statements to have all config files in each directory processed.

Object Cache File

Format: object_cache_file=<file_name>

Example: object_cache_file_file=/usr/local/nagios/var/objects.cache

19

This directive is used to specify a file in which a cached copy of object definitions should be stored. The
cache file is (re)created every time Nagios is (re)started and is used by the CGIs. It is intended to speed
up config file caching in the CGIs and allow you to edit the source object config files while Nagios is
running without affecting the output displayed in the CGIs.

Resource File

Format: resource_file=<file_name>

Example: resource_file=/usr/local/nagios/etc/resource.cfg

This is used to specify an optional resource file that can contain $USERn$ macro definitions. $USERn$
macros are useful for storing usernames, passwords, and items commonly used in command definitions
(like directory paths). The CGIs will not attempt to read resource files, so you can set restrictive
permissions (600 or 660) on them to protect sensitive information. You can include multiple resource
files by adding multiple resource_file statements to the main config file - Nagios will process them all.
See the sample resource.cfg file in the base of the Nagios directory for an example of how to define
$USERn$ macros.

Temp File

Format: temp_file=<file_name>

Example: temp_file=/usr/local/nagios/var/nagios.tmp

This is a temporary file that Nagios periodically creates to use when updating comment data, status
data, etc. The file is deleted when it is no longer needed.

Status File

Format: status_file=<file_name>

Example: status_file=/usr/local/nagios/var/status.dat

This is the file that Nagios uses to store the current status of all monitored services. The status of all
hosts associated with the service you monitor are also recorded here. This file is used by the CGIs so that
current monitoring status can be reported via a web interface. The CGIs must have read access to this file
in order to function properly. This file is deleted every time Nagios stops and recreated when it starts.

Aggregated Status Updates Option

Format: aggregate_status_updates=<0/1>

Example: aggregate_status_updates=1

This option determines whether or not Nagios will aggregate updates of host, service, and program
status data. If you do not enable this option, status data is updated every time a host or service checks
occurs. This can result in high CPU loads and file I/O if you are monitoring a lot of services. If you want
Nagios to only update status data (in the status file) every few seconds (as determined by the
status_update_interval option), enable this option. If you want immediate updates, disable it. I would

20

highly recommend using aggregated updates (even at short intervals) unless you have good reason not
to. Values are as follows:

0 = Disable aggregated updates

1 = Enabled aggregated updates (default)

Aggregated Status Update Interval

Format: status_update_interval=<seconds>

Example: status_update_interval=15

This setting determines how often (in seconds) that Nagios will update status data in the status file. The
minimum update interval is five seconds. If you have disabled aggregated status updates (with the
aggregate_status_updates option), this option has no effect.

Nagios User

Format: nagios_user=<username/UID>

Example: nagios_user=nagios

This is used to set the effective user that the Nagios process should run as. After initial program startup
and before starting to monitor anything, Nagios will drop its effective privileges and run as this user.
You may specify either a username or a UID.

Nagios Group

Format: nagios_group=<groupname/GID>

Example: nagios_group=nagios

This is used to set the effective group that the Nagios process should run as. After initial program
startup and before starting to monitor anything, Nagios will drop its effective privileges and run as this
group. You may specify either a groupname or a GID.

Notifications Option

Format: enable_notifications=<0/1>

Example: enable_notifications=1

This option determines whether or not Nagios will send out notifications when it initially (re)starts. If
this option is disabled, Nagios will not send out notifications for any host or service. Note: If you have
state retention enabled, Nagios will ignore this setting when it (re)starts and use the last known setting
for this option (as stored in the state retention file), unless you disable the use_retained_program_state
option. If you want to change this option when state retention is active (and the
use_retained_program_state is enabled), you’ll have to use the appropriate external command or change
it via the web interface. Values are as follows:

21

0 = Disable notifications

1 = Enable notifications (default)

Service Check Execution Option

Format: execute_service_checks=<0/1>

Example: execute_service_checks=1

This option determines whether or not Nagios will execute service checks when it initially (re)starts. If
this option is disabled, Nagios will not actively execute any service checks and will remain in a sort of
"sleep" mode (it can still accept passive checks unless you’ve disabled them). This option is most often
used when configuring backup monitoring servers, as described in the documentation on redundancy,
or when setting up a distributed monitoring environment. Note: If you have state retention enabled,
Nagios will ignore this setting when it (re)starts and use the last known setting for this option (as stored
in the state retention file), unless you disable the use_retained_program_state option. If you want to
change this option when state retention is active (and the use_retained_program_state is enabled), you’ll
have to use the appropriate external command or change it via the web interface. Values are as follows:

0 = Don’t execute service checks

1 = Execute service checks (default)

Passive Service Check Acceptance Option

Format: accept_passive_service_checks=<0/1>

Example: accept_passive_service_checks=1

This option determines whether or not Nagios will accept passive service checks when it initially
(re)starts. If this option is disabled, Nagios will not accept any passive service checks. Note: If you have
state retention enabled, Nagios will ignore this setting when it (re)starts and use the last known setting
for this option (as stored in the state retention file), unless you disable the use_retained_program_state
option. If you want to change this option when state retention is active (and the
use_retained_program_state is enabled), you’ll have to use the appropriate external command or change
it via the web interface. Values are as follows:

0 = Don’t accept passive service checks

1 = Accept passive service checks (default)

Host Check Execution Option

Format: execute_host_checks=<0/1>

Example: execute_host_checks=1

This option determines whether or not Nagios will execute on-demand and regularly scheduled host
checks when it initially (re)starts. If this option is disabled, Nagios will not actively execute any host
checks, although it can still accept passive host checks unless you’ve disabled them). This option is most
often used when configuring backup monitoring servers, as described in the documentation on
redundancy, or when setting up a distributed monitoring environment. Note: If you have state retention
enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for this option

22

(as stored in the state retention file), unless you disable the use_retained_program_state option. If you
want to change this option when state retention is active (and the use_retained_program_state is
enabled), you’ll have to use the appropriate external command or change it via the web interface. Values
are as follows:

0 = Don’t execute host checks

1 = Execute host checks (default)

Passive Host Check Acceptance Option

Format: accept_passive_host_checks=<0/1>

Example: accept_passive_host_checks=1

This option determines whether or not Nagios will accept passive host checks when it initially (re)starts.
If this option is disabled, Nagios will not accept any passive host checks. Note: If you have state
retention enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for
this option (as stored in the state retention file), unless you disable the use_retained_program_state
option. If you want to change this option when state retention is active (and the
use_retained_program_state is enabled), you’ll have to use the appropriate external command or change
it via the web interface. Values are as follows:

0 = Don’t accept passive host checks

1 = Accept passive host checks (default)

Event Handler Option

Format: enable_event_handlers=<0/1>

Example: enable_event_handlers=1

This option determines whether or not Nagios will run event handlers when it initially (re)starts. If this
option is disabled, Nagios will not run any host or service event handlers. Note: If you have state
retention enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for
this option (as stored in the state retention file), unless you disable the use_retained_program_state
option. If you want to change this option when state retention is active (and the
use_retained_program_state is enabled), you’ll have to use the appropriate external command or change
it via the web interface. Values are as follows:

0 = Disable event handlers

1 = Enable event handlers (default)

Log Rotation Method

Format: log_rotation_method=<n/h/d/w/m>

Example: log_rotation_method=d

This is the rotation method that you would like Nagios to use for your log file. Values are as follows:

23

n = None (don’t rotate the log - this is the default)

h = Hourly (rotate the log at the top of each hour)

d = Daily (rotate the log at midnight each day)

w = Weekly (rotate the log at midnight on Saturday)

m = Monthly (rotate the log at midnight on the last day of the month)

Log Archive Path

Format: log_archive_path=<path>

Example: log_archive_path=/usr/local/nagios/var/archives/

This is the directory where Nagios should place log files that have been rotated. This option is ignored if
you choose to not use the log rotation functionality.

External Command Check Option

Format: check_external_commands=<0/1>

Example: check_external_commands=1

This option determines whether or not Nagios will check the command file for commands that should
be executed. This option must be enabled if you plan on using the command CGI to issue commands via
the web interface. More information on external commands can be found here.

0 = Don’t check external commands (default)

1 = Check external commands

External Command Check Interval

Format: command_check_interval=<xxx>[s]

Example: command_check_interval=1

If you specify a number with an "s" appended to it (i.e. 30s), this is the number of seconds to wait between
external command checks. If you leave off the "s", this is the number of "time units" to wait between
external command checks. Unless you’ve changed the interval_length value (as defined below) from the
default value of 60, this number will mean minutes.

Note: By setting this value to -1, Nagios will check for external commands as often as possible. Each time
Nagios checks for external commands it will read and process all commands present in the command
file before continuing on with its other duties. More information on external commands can be found
here.

External Command File

Format: command_file=<file_name>

Example: command_file=/usr/local/nagios/var/rw/nagios.cmd

24

This is the file that Nagios will check for external commands to process. The command CGI writes
commands to this file. Other third party programs can write to this file if proper file permissions have
been granted as outline in here. The external command file is implemented as a named pipe (FIFO),
which is created when Nagios starts and removed when it shuts down. If the file exists when Nagios
starts, the Nagios process will terminate with an error message. More information on external
commands can be found here.

Downtime File

Format: downtime_file=<file_name>

Example: downtime_file=/usr/local/nagios/var/downtime.dat

This is the file that Nagios will use for storing scheduled host and service downtime information.
Comments can be viewed and added for both hosts and services through the extended information CGI.

Comment File

Format: comment_file=<file_name>

Example: comment_file=/usr/local/nagios/var/comment.dat

This is the file that Nagios will use for storing service and host comments. Comments can be viewed and
added for both hosts and services through the extended information CGI.

Lock File

Format: lock_file=<file_name>

Example: lock_file=/tmp/nagios.lock

This option specifies the location of the lock file that Nagios should create when it runs as a daemon
(when started with the -d command line argument). This file contains the process id (PID) number of the
running Nagios process.

State Retention Option

Format: retain_state_information=<0/1>

Example: retain_state_information=1

This option determines whether or not Nagios will retain state information for hosts and services
between program restarts. If you enable this option, you should supply a value for the
state_retention_file variable. When enabled, Nagios will save all state information for hosts and service
before it shuts down (or restarts) and will read in previously saved state information when it starts up
again.

0 = Don’t retain state information

1 = Retain state information (default)

25

State Retention File

Format: state_retention_file=<file_name>

Example: state_retention_file=/usr/local/nagios/var/retention.dat

This is the file that Nagios will use for storing service and host state information before it shuts down.
When Nagios is restarted it will use the information stored in this file for setting the initial states of
services and hosts before it starts monitoring anything. This file is deleted after Nagios reads in initial
state information when it (re)starts. In order to make Nagios retain state information between program
restarts, you must enable the retain_state_information option.

Automatic State Retention Update Interval

Format: retention_update_interval=<minutes>

Example: retention_update_interval=60

This setting determines how often (in minutes) that Nagios will automatically save retention data during
normal operation. If you set this value to 0, Nagios will not save retention data at regular intervals, but it
will still save retention data before shutting down or restarting. If you have disabled state retention
(with the retain_state_information option), this option has no effect.

Use Retained Program State Option

Format: use_retained_program_state=<0/1>

Example: use_retained_program_state=1

This setting determines whether or not Nagios will set various program-wide state variables based on
the values saved in the retention file. Some of these program-wide state variables that are normally
saved across program restarts if state retention is enabled include the enable_notifications,
enable_flap_detection, enable_event_handlers, execute_service_checks, and
accept_passive_service_checks options. If you do not have state retention enabled, this option has no
effect.

0 = Don’t use retained program state

1 = Use retained program state (default)

Use Retained Scheduling Info Option

Format: use_retained_scheduling_info=<0/1>

Example: use_retained_scheduling_info=1

This setting determines whether or not Nagios will retain scheduling info (next check times) for hosts
and services when it restarts. If you are adding a large number (or percentage) of hosts and services, I
would recommend disabling this option when you first restart Nagios, as it can adversely skew the
spread of initial checks. Otherwise you will probably want to leave it enabled.

26

0 = Don’t use retained scheduling info

1 = Use retained scheduling info (default)

Syslog Logging Option

Format: use_syslog=<0/1>

Example: use_syslog=1

This variable determines whether messages are logged to the syslog facility on your local host. Values
are as follows:

0 = Don’t use syslog facility

1 = Use syslog facility

Notification Logging Option

Format: log_notifications=<0/1>

Example: log_notifications=1

This variable determines whether or not notification messages are logged. If you have a lot of contacts or
regular service failures your log file will grow relatively quickly. Use this option to keep contact
notifications from being logged.

0 = Don’t log notifications

1 = Log notifications

Service Check Retry Logging Option

Format: log_service_retries=<0/1>

Example: log_service_retries=1

This variable determines whether or not service check retries are logged. Service check retries occur
when a service check results in a non-OK state, but you have configured Nagios to retry the service more
than once before responding to the error. Services in this situation are considered to be in "soft" states.
Logging service check retries is mostly useful when attempting to debug Nagios or test out service event
handlers.

0 = Don’t log service check retries

1 = Log service check retries

Host Check Retry Logging Option

Format: log_host_retries=<0/1>

Example: log_host_retries=1

27

This variable determines whether or not host check retries are logged. Logging host check retries is
mostly useful when attempting to debug Nagios or test out host event handlers.

0 = Don’t log host check retries

1 = Log host check retries

Event Handler Logging Option

Format: log_event_handlers=<0/1>

Example: log_event_handlers=1

This variable determines whether or not service and host event handlers are logged. Event handlers are
optional commands that can be run whenever a service or hosts changes state. Logging event handlers is
most useful when debugging Nagios or first trying out your event handler scripts.

0 = Don’t log event handlers

1 = Log event handlers

Initial States Logging Option

Format: log_initial_states=<0/1>

Example: log_initial_states=1

This variable determines whether or not Nagios will force all initial host and service states to be logged,
even if they result in an OK state. Initial service and host states are normally only logged when there is a
problem on the first check. Enabling this option is useful if you are using an application that scans the
log file to determine long-term state statistics for services and hosts.

0 = Don’t log initial states (default)

1 = Log initial states

External Command Logging Option

Format: log_external_commands=<0/1>

Example: log_external_commands=1

This variable determines whether or not Nagios will log external commands that it receives from the
external command file. Note: This option does not control whether or not passive service checks (which
are a type of external command) get logged. To enable or disable logging of passive checks, use the
log_passive_checks option.

0 = Don’t log external commands

1 = Log external commands (default)

Passive Check Logging Option

28

Format: log_passive_checks=<0/1>

Example: log_passive_checks=1

This variable determines whether or not Nagios will log passive host and service checks that it receives
from the external command file. If you are setting up a distributed monitoring environment or plan on
handling a large number of passive checks on a regular basis, you may wish to disable this option so
your log file doesn’t get too large.

0 = Don’t log passive checks

1 = Log passive checks (default)

Global Host Event Handler Option

Format: global_host_event_handler=<command>

Example: global_host_event_handler=log-host-event-to-db

This option allows you to specify a host event handler command that is to be run for every host state
change. The global event handler is executed immediately prior to the event handler that you have
optionally specified in each host definition. The command argument is the short name of a command that
you define in your object configuration file. The maximum amount of time that this command can run is
controlled by the event_handler_timeout option. More information on event handlers can be found here.

Global Service Event Handler Option

Format: global_service_event_handler=<command>

Example: global_service_event_handler=log-service-event-to-db

This option allows you to specify a service event handler command that is to be run for every service
state change. The global event handler is executed immediately prior to the event handler that you have
optionally specified in each service definition. The command argument is the short name of a command
that you define in your object configuration file. The maximum amount of time that this command can
run is controlled by the event_handler_timeout option. More information on event handlers can be
found here.

Inter-Check Sleep Time

Format: sleep_time=<seconds>

Example: sleep_time=1

This is the number of seconds that Nagios will sleep before checking to see if the next service or host
check in the scheduling queue should be executed. Note that Nagios will only sleep after it "catches up"
with queued service checks that have fallen behind.

Service Inter-Check Delay Method

29

Format: service_inter_check_delay_method=<n/d/s/x.xx>

Example: service_inter_check_delay_method=s

This option allows you to control how service checks are initially "spread out" in the event queue. Using
a "smart" delay calculation (the default) will cause Nagios to calculate an average check interval and
spread initial checks of all services out over that interval, thereby helping to eliminate CPU load spikes.
Using no delay is generally not recommended unless you are testing the service check parallelization
functionality. Using no delay will cause all service checks to be scheduled for execution at the same time.
This means that you will generally have large CPU spikes when the services are all executed in parallel.
More information on how to estimate how the inter-check delay affects service check scheduling can be
found here. Values are as follows:

n = Don’t use any delay - schedule all service checks to run immediately (i.e. at the same time!)

d = Use a "dumb" delay of 1 second between service checks

s = Use a "smart" delay calculation to spread service checks out evenly (default)

x.xx = Use a user-supplied inter-check delay of x.xx seconds

Maximum Service Check Spread

Format: max_service_check_spread=<minutes>

Example: max_service_check_spread=30

This option determines the maximum number of minutes from when Nagios starts that all services (that
are scheduled to be regularly checked) are checked. This option will automatically adjust the service
inter-check delay (if necessary) to ensure that the initial checks of all services occur within the timeframe
you specify. In general, this option will not have an affect on service check scheduling if scheduling
information is being retained using the use_retained_scheduling_info option. Default value is 30
(minutes).

Service Interleave Factor

Format: service_interleave_factor=<s|x>

Example: service_interleave_factor=s

This variable determines how service checks are interleaved. Interleaving allows for a more even
distribution of service checks, reduced load on remote hosts, and faster overall detection of host
problems. With the introduction of service check parallelization, remote hosts could get bombarded with
checks if interleaving was not implemented. This could cause the service checks to fail or return
incorrect results if the remote host was overloaded with processing other service check requests. Setting
this value to 1 is equivalent to not interleaving the service checks (this is how versions of Nagios
previous to 0.0.5 worked). Set this value to s (smart) for automatic calculation of the interleave factor
unless you have a specific reason to change it. The best way to understand how interleaving works is to
watch the status CGI (detailed view) when Nagios is just starting. You should see that the service check
results are spread out as they begin to appear. More information on how interleaving works can be
found here.

30

x = A number greater than or equal to 1 that specifies the interleave factor to use. An interleave
factor of 1 is equivalent to not interleaving the service checks.

s = Use a "smart" interleave factor calculation (default)

Maximum Concurrent Service Checks

Format: max_concurrent_checks=<max_checks>

Example: max_concurrent_checks=20

This option allows you to specify the maximum number of service checks that can be run in parallel at
any given time. Specifying a value of 1 for this variable essentially prevents any service checks from
being parallelized. Specifying a value of 0 (the default) does not place any restrictions on the number of
concurrent checks. You’ll have to modify this value based on the system resources you have available on
the machine that runs Nagios, as it directly affects the maximum load that will be imposed on the system
(processor utilization, memory, etc.). More information on how to estimate how many concurrent checks
you should allow can be found here.

Service Reaper Frequency

Format: service_reaper_frequency=<frequency_in_seconds>

Example: service_reaper_frequency=10

This option allows you to control the frequency in seconds of service "reaper" events. "Reaper" events
process the results from parallelized service checks that have finished executing. These events consitute
the core of the monitoring logic in Nagios.

Host Inter-Check Delay Method

Format: host_inter_check_delay_method=<n/d/s/x.xx>

Example: host_inter_check_delay_method=s

This option allows you to control how host checks that are scheduled to be checked on a regular basis are
initially "spread out" in the event queue. Using a "smart" delay calculation (the default) will cause
Nagios to calculate an average check interval and spread initial checks of all hosts out over that interval,
thereby helping to eliminate CPU load spikes. Using no delay is generally not recommended. Using no
delay will cause all host checks to be scheduled for execution at the same time. More information on
how to estimate how the inter-check delay affects host check scheduling can be found here.Values are as
follows:

n = Don’t use any delay - schedule all host checks to run immediately (i.e. at the same time!)

d = Use a "dumb" delay of 1 second between host checks

s = Use a "smart" delay calculation to spread host checks out evenly (default)

x.xx = Use a user-supplied inter-check delay of x.xx seconds

Maximum Host Check Spread

31

Format: max_host_check_spread=<minutes>

Example: max_host_check_spread=30

This option determines the maximum number of minutes from when Nagios starts that all hosts (that
are scheduled to be regularly checked) are checked. This option will automatically adjust the host
inter-check delay (if necessary) to ensure that the initial checks of all hosts occur within the timeframe
you specify. In general, this option will not have an affect on host check scheduling if scheduling
information is being retained using the use_retained_scheduling_info option. Default value is 30
(minutes).

Timing Interval Length

Format: interval_length=<seconds>

Example: interval_length=60

This is the number of seconds per "unit interval" used for timing in the scheduling queue,
re-notifications, etc. "Units intervals" are used in the object configuration file to determine how often to
run a service check, how often of re-notify a contact, etc.

Important: The default value for this is set to 60, which means that a "unit value" of 1 in the object
configuration file will mean 60 seconds (1 minute). I have not really tested other values for this variable,
so proceed at your own risk if you decide to do so!

Auto-Rescheduling Option

Format: auto_reschedule_checks=<0/1>

Example: auto_reschedule_checks=1

This option determines whether or not Nagios will attempt to automatically reschedule active host and
service checks to "smooth" them out over time. This can help to balance the load on the monitoring
server, as it will attempt to keep the time between consecutive checks consistent, at the expense of
executing checks on a more rigid schedule.

WARNING: THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE
VERSIONS. ENABLING THIS OPTION CAN DEGRADE PERFORMANCE - RATHER THAN
INCREASE IT - IF USED IMPROPERLY!

Auto-Rescheduling Interval

Format: auto_rescheduling_interval=<seconds>

Example: auto_rescheduling_interval=30

This option determines how often (in seconds) Nagios will attempt to automatically reschedule checks.
This option only has an effect if the auto_reschedule_checks option is enabled. Default is 30 seconds.

32

WARNING: THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE
VERSIONS. ENABLING THE AUTO-RESCHEDULING OPTION CAN DEGRADE PERFORMANCE -
RATHER THAN INCREASE IT - IF USED IMPROPERLY!

Auto-Rescheduling Window

Format: auto_rescheduling_window=<seconds>

Example: auto_rescheduling_window=180

This option determines the "window" of time (in seconds) that Nagios will look at when automatically
rescheduling checks. Only host and service checks that occur in the next X seconds (determined by this
variable) will be rescheduled. This option only has an effect if the auto_reschedule_checks option is
enabled. Default is 180 seconds (3 minutes).

WARNING: THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE
VERSIONS. ENABLING THE AUTO-RESCHEDULING OPTION CAN DEGRADE PERFORMANCE -
RATHER THAN INCREASE IT - IF USED IMPROPERLY!

Aggressive Host Checking Option

Format: use_aggressive_host_checking=<0/1>

Example: use_aggressive_host_checking=0

Nagios tries to be smart about how and when it checks the status of hosts. In general, disabling this
option will allow Nagios to make some smarter decisions and check hosts a bit faster. Enabling this
option will increase the amount of time required to check hosts, but may improve reliability a bit. Unless
you have problems with Nagios not recognizing that a host recovered, I would suggest not enabling this
option.

0 = Don’t use aggressive host checking (default)

1 = Use aggressive host checking

Flap Detection Option

Format: enable_flap_detection=<0/1>

Example: enable_flap_detection=0

This option determines whether or not Nagios will try and detect hosts and services that are "flapping".
Flapping occurs when a host or service changes between states too frequently, resulting in a barrage of
notifications being sent out. When Nagios detects that a host or service is flapping, it will temporarily
suppress notifications for that host/service until it stops flapping. Flap detection is very experimental at
this point, so use this feature with caution! More information on how flap detection and handling works
can be found here. Note: If you have state retention enabled, Nagios will ignore this setting when it
(re)starts and use the last known setting for this option (as stored in the state retention file), unless you
disable the use_retained_program_state option. If you want to change this option when state retention is
active (and the use_retained_program_state is enabled), you’ll have to use the appropriate external
command or change it via the web interface.

33

0 = Don’t enable flap detection (default)

1 = Enable flap detection

Low Service Flap Threshold

Format: low_service_flap_threshold=<percent>

Example: low_service_flap_threshold=25.0

This option is used to set the low threshold for detection of service flapping. For more information on
how flap detection and handling works (and how this option affects things) read this.

High Service Flap Threshold

Format: high_service_flap_threshold=<percent>

Example: high_service_flap_threshold=50.0

This option is used to set the low threshold for detection of service flapping. For more information on
how flap detection and handling works (and how this option affects things) read this.

Low Host Flap Threshold

Format: low_host_flap_threshold=<percent>

Example: low_host_flap_threshold=25.0

This option is used to set the low threshold for detection of host flapping. For more information on how
flap detection and handling works (and how this option affects things) read this.

High Host Flap Threshold

Format: high_host_flap_threshold=<percent>

Example: high_host_flap_threshold=50.0

This option is used to set the low threshold for detection of host flapping. For more information on how
flap detection and handling works (and how this option affects things) read this.

Soft Service Dependencies Option

Format: soft_state_dependencies=<0/1>

Example: soft_state_dependencies=0

This option determines whether or not Nagios will use soft service state information when checking
service dependencies. Normally Nagios will only use the latest hard service state when checking
dependencies. If you want it to use the latest state (regardless of whether its a soft or hard state type),
enable this option.

34

0 = Don’t use soft service state dependencies (default)

1 = Use soft service state dependencies

Service Check Timeout

Format: service_check_timeout=<seconds>

Example: service_check_timeout=60

This is the maximum number of seconds that Nagios will allow service checks to run. If checks exceed
this limit, they are killed and a CRITICAL state is returned. A timeout error will also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last
ditch mechanism to kill off plugins which are misbehaving and not exiting in a timely manner. It should
be set to something high (like 60 seconds or more), so that each service check normally finishes executing
within this time limit. If a service check runs longer than this limit, Nagios will kill it off thinking it is a
runaway processes.

Host Check Timeout

Format: host_check_timeout=<seconds>

Example: host_check_timeout=60

This is the maximum number of seconds that Nagios will allow host checks to run. If checks exceed this
limit, they are killed and a CRITICAL state is returned and the host will be assumed to be DOWN. A
timeout error will also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last
ditch mechanism to kill off plugins which are misbehaving and not exiting in a timely manner. It should
be set to something high (like 60 seconds or more), so that each host check normally finishes executing
within this time limit. If a host check runs longer than this limit, Nagios will kill it off thinking it is a
runaway processes.

Event Handler Timeout

Format: event_handler_timeout=<seconds>

Example: event_handler_timeout=60

This is the maximum number of seconds that Nagios will allow event handlers to be run. If an event
handler exceeds this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last
ditch mechanism to kill off commands which are misbehaving and not exiting in a timely manner. It
should be set to something high (like 60 seconds or more), so that each event handler command
normally finishes executing within this time limit. If an event handler runs longer than this limit, Nagios
will kill it off thinking it is a runaway processes.

35

Notification Timeout

Format: notification_timeout=<seconds>

Example: notification_timeout=60

This is the maximum number of seconds that Nagios will allow notification commands to be run. If a
notification command exceeds this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last
ditch mechanism to kill off commands which are misbehaving and not exiting in a timely manner. It
should be set to something high (like 60 seconds or more), so that each notification command finishes
executing within this time limit. If a notification command runs longer than this limit, Nagios will kill it
off thinking it is a runaway processes.

Obsessive Compulsive Service Processor Timeout

Format: ocsp_timeout=<seconds>

Example: ocsp_timeout=5

This is the maximum number of seconds that Nagios will allow an obsessive compulsive service
processor command to be run. If a command exceeds this time limit it will be killed and a warning will
be logged.

Obsessive Compulsive Host Processor Timeout

Format: ochp_timeout=<seconds>

Example: ochp_timeout=5

This is the maximum number of seconds that Nagios will allow an obsessive compulsive host processor
command to be run. If a command exceeds this time limit it will be killed and a warning will be logged.

Performance Data Processor Command Timeout

Format: perfdata_timeout=<seconds>

Example: perfdata_timeout=5

This is the maximum number of seconds that Nagios will allow a host performance data processor
command or service performance data processor command to be run. If a command exceeds this time
limit it will be killed and a warning will be logged.

Obsess Over Services Option

Format: obsess_over_services=<0/1>

Example: obsess_over_services=1

36

This value determines whether or not Nagios will "obsess" over service checks results and run the
obsessive compulsive service processor command you define. I know - funny name, but it was all I
could think of. This option is useful for performing distributed monitoring. If you’re not doing
distributed monitoring, don’t enable this option.

0 = Don’t obsess over services (default)

1 = Obsess over services

Obsessive Compulsive Service Processor Command

Format: ocsp_command=<command>

Example: ocsp_command=obsessive_service_handler

This option allows you to specify a command to be run after every service check, which can be useful in
distributed monitoring. This command is executed after any event handler or notification commands.
The command argument is the short name of a command definition that you define in your object
configuration file. The maximum amount of time that this command can run is controlled by the
ocsp_timeout option. More information on distributed monitoring can be found here. This command is
only executed if the obsess_over_services option is enabled globally and if the obsess_over_service
directive in the service definition is enabled.

Obsess Over Hosts Option

Format: obsess_over_hosts=<0/1>

Example: obsess_over_hosts=1

This value determines whether or not Nagios will "obsess" over host checks results and run the
obsessive compulsive host processor command you define. I know - funny name, but it was all I could
think of. This option is useful for performing distributed monitoring. If you’re not doing distributed
monitoring, don’t enable this option.

0 = Don’t obsess over hosts (default)

1 = Obsess over hosts

Obsessive Compulsive Host Processor Command

Format: ochp_command=<command>

Example: ochp_command=obsessive_host_handler

This option allows you to specify a command to be run after every host check, which can be useful in
distributed monitoring. This command is executed after any event handler or notification commands.
The command argument is the short name of a command definition that you define in your object
configuration file. The maximum amount of time that this command can run is controlled by the
ochp_timeout option. More information on distributed monitoring can be found here. This command is
only executed if the obsess_over_hosts option is enabled globally and if the obsess_over_host directive in
the host definition is enabled.

37

Performance Data Processing Option

Format: process_performance_data=<0/1>

Example: process_performance_data=1

This value determines whether or not Nagios will process host and service check performance data.

0 = Don’t process performance data (default)

1 = Process performance data

Host Performance Data Processing Command

Format: host_perfdata_command=<command>

Example: host_perfdata_command=process-host-perfdata

This option allows you to specify a command to be run after every host check to process host
performance data that may be returned from the check. The command argument is the short name of a
command definition that you define in your object configuration file. This command is only executed if
the process_performance_data option is enabled globally and if the process_perf_data directive in the host
definition is enabled.

Service Performance Data Processing Command

Format: service_perfdata_command=<command>

Example: service_perfdata_command=process-service-perfdata

This option allows you to specify a command to be run after every service check to process service
performance data that may be returned from the check. The command argument is the short name of a
command definition that you define in your object configuration file. This command is only executed if
the process_performance_data option is enabled globally and if the process_perf_data directive in the
service definition is enabled.

Host Performance Data File

Format: host_perfdata_file=<file_name>

Example: host_perfdata_file=/usr/local/nagios/var/host-perfdata.dat

This option allows you to specify a file to which host performance data will be written after every host
check. Data will be written to the performance file as specified by the host_perfdata_file_template
option. Performance data is only written to this file if the process_performance_data option is enabled
globally and if the process_perf_data directive in the host definition is enabled.

Service Performance Data File

38

Format: service_perfdata_file=<file_name>

Example: service_perfdata_file=/usr/local/nagios/var/service-perfdata.dat

This option allows you to specify a file to which service performance data will be written after every
service check. Data will be written to the performance file as specified by the
service_perfdata_file_template option. Performance data is only written to this file if the
process_performance_data option is enabled globally and if the process_perf_data directive in the service
definition is enabled.

Host Performance Data File Template

Format: host_perfdata_file_template=<template>

Example: host_perfdata_file_template=[HOSTPERFDATA]\t$TIMET$\t$HOSTNAME$\t$HOSTEXECUTIONTIME$\t$HOSTOUTPUT$\t$HOSTPERFDATA$

This option determines what (and how) data is written to the host performance data file. The template
may contain macros, special characters (\t for tab, \r for carriage return, \n for newline) and plain text.
A newline is automatically added after each write to the performance data file.

Service Performance Data File Template

Format: service_perfdata_file_template=<template>

Example: service_perfdata_file_template=[SERVICEPERFDATA]\t$TIMET$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$

This option determines what (and how) data is written to the service performance data file. The template
may contain macros, special characters (\t for tab, \r for carriage return, \n for newline) and plain text.
A newline is automatically added after each write to the performance data file.

Host Performance Data File Mode

Format: host_perfdata_file_mode=<mode>

Example: host_perfdata_file_mode=a

This option determines whether the host performance data file is opened in write or append mode.
Unless the file is a named pipe, you will probably want to use the default mode of append.

a = Open file in append mode (default)

w = Open file in write mode

Service Performance Data File Mode

Format: service_perfdata_file_mode=<mode>

Example: service_perfdata_file_mode=a

This option determines whether the service performance data file is opened in write or append mode.
Unless the file is a named pipe, you will probably want to use the default mode of append.

39

a = Open file in append mode (default)

w = Open file in write mode

Host Performance Data File Processing Interval

Format: host_perfdata_file_processing_interval=<seconds>

Example: host_perfdata_file_processing_interval=0

This option allows you to specify the interval (in seconds) at which the host performance data file is
processed using the host performance data file processing command. A value of 0 indicates that the
performance data file should not be processed at regular intervals.

Service Performance Data File Processing Interval

Format: service_perfdata_file_processing_interval=<seconds>

Example: service_perfdata_file_processing_interval=0

This option allows you to specify the interval (in seconds) at which the service performance data file is
processed using the service performance data file processing command. A value of 0 indicates that the
performance data file should not be processed at regular intervals.

Host Performance Data File Processing Command

Format: host_perfdata_file_processing_command=<command>

Example: host_perfdata_file_processing_command=process-host-perfdata-file

This option allows you to specify the command that should be executed to process the host performance
data file. The command argument is the short name of a command definition that you define in your
object configuration file. The interval at which this command is executed is determined by the
host_perfdata_file_processing_interval directive.

Service Performance Data File Processing Command

Format: service_perfdata_file_processing_command=<command>

Example: service_perfdata_file_processing_command=process-service-perfdata-file

This option allows you to specify the command that should be executed to process the service
performance data file. The command argument is the short name of a command definition that you define
in your object configuration file. The interval at which this command is executed is determined by the
service_perfdata_file_processing_interval directive.

Orphaned Service Check Option

40

Format: check_for_orphaned_services=<0/1>

Example: check_for_orphaned_services=1

This option allows you to enable or disable checks for orphaned service checks. Orphaned service checks
are checks which have been executed and have been removed from the event queue, but have not had
any results reported in a long time. Since no results have come back in for the service, it is not
rescheduled in the event queue. This can cause service checks to stop being executed. Normally it is very
rare for this to happen - it might happen if an external user or process killed off the process that was
being used to execute a service check. If this option is enabled and Nagios finds that results for a
particular service check have not come back, it will log an error message and reschedule the service
check. If you start seeing service checks that never seem to get rescheduled, enable this option and see if
you notice any log messages about orphaned services.

0 = Don’t check for orphaned service checks

1 = Check for orphaned service checks (default)

Service Freshness Checking Option

Format: check_service_freshness=<0/1>

Example: check_service_freshness=0

This option determines whether or not Nagios will periodically check the "freshness" of service checks.
Enabling this option is useful for helping to ensure that passive service checks are received in a timely
manner. More information on freshness checking can be found here.

0 = Don’t check service freshness

1 = Check service freshness (default)

Service Freshness Check Interval

Format: service_freshness_check_interval=<seconds>

Example: service_freshness_check_interval=60

This setting determines how often (in seconds) Nagios will periodically check the "freshness" of service
check results. If you have disabled service freshness checking (with the check_service_freshness option),
this option has no effect. More information on freshness checking can be found here.

Host Freshness Checking Option

Format: check_host_freshness=<0/1>

Example: check_host_freshness=0

This option determines whether or not Nagios will periodically check the "freshness" of host checks.
Enabling this option is useful for helping to ensure that passive host checks are received in a timely
manner. More information on freshness checking can be found here.

41

0 = Don’t check host freshness

1 = Check host freshness (default)

Host Freshness Check Interval

Format: host_freshness_check_interval=<seconds>

Example: host_freshness_check_interval=60

This setting determines how often (in seconds) Nagios will periodically check the "freshness" of host
check results. If you have disabled host freshness checking (with the check_host_freshness option), this
option has no effect. More information on freshness checking can be found here.

Date Format

Format: date_format=<option>

Example: date_format=us

This option allows you to specify what kind of date/time format Nagios should use in the web interface
and date/time macros. Possible options (along with example output) include:

Option Output Format Sample Output

us MM/DD/YYYY HH:MM:SS 06/30/2002 03:15:00

euro DD/MM/YYYY HH:MM:SS 30/06/2002 03:15:00

iso8601 YYYY-MM-DD HH:MM:SS 2002-06-30 03:15:00

strict-iso8601 YYYY-MM-DDTHH:MM:SS 2002-06-30T03:15:00

Illegal Object Name Characters

Format: illegal_object_name_chars=<chars...>

Example: illegal_object_name_chars=‘~!$%^&*"|’<>?,()=

This option allows you to specify illegal characters that cannot be used in host names, service
descriptions, or names of other object types. Nagios will allow you to use most characters in object
definitions, but I recommend not using the characters shown in the example above. Doing may give you
problems in the web interface, notification commands, etc.

Illegal Macro Output Characters

Format: illegal_macro_output_chars=<chars...>

Example: illegal_macro_output_chars=‘~$^&"|’<>

42

This option allows you to specify illegal characters that should be stripped from macros before being
used in notifications, event handlers, and other commands. This DOES NOT affect macros used in
service or host check commands. You can choose to not strip out the characters shown in the example
above, but I recommend you do not do this. Some of these characters are interpreted by the shell (i.e. the
backtick) and can lead to security problems. The following macros are stripped of the characters you
specify:

$HOSTOUTPUT$, $HOSTPERFDATA$, $HOSTACKAUTHOR$, $HOSTACKCOMMENT$,
$SERVICEOUTPUT$, $SERVICEPERFDATA$, $SERVICEACKAUTHOR$, and
$SERVICEACKCOMMENT$

Regular Expression Matching Option

Format: use_regexp_matching=<0/1>

Example: use_regexp_matching=0

This option determines whether or not various directives in your object definitions will be processed as
regular expressions. More information on how this works can be found here.

0 = Don’t use regular expression matching (default)

1 = Use regular expression matching

True Regular Expression Matching Option

Format: use_true_regexp_matching=<0/1>

Example: use_true_regexp_matching=0

If you’ve enabled regular expression matching of various object directives using the
use_regexp_matching option, this option will determine when object directives are treated as regular
expressions. If this option is disabled (the default), directives will only be treated as regular expressions
if the contain a * or ? wildcard character. If this option is enabled, all appropriate directives will be
treated as regular expression - be careful when enabling this! More information on how this works can
be found here.

0 = Don’t use true regular expression matching (default)

1 = Use true regular expression matching

Administrator Email Address

Format: admin_email=<email_address>

Example: admin_email=root@localhost.localdomain

This is the email address for the administrator of the local machine (i.e. the one that Nagios is running
on). This value can be used in notification commands by using the $ADMINEMAIL$ macro.

Administrator Pager

43

Format: admin_pager=<pager_number_or_pager_email_gateway>

Example: admin_pager=pageroot@localhost.localdomain

This is the pager number (or pager email gateway) for the administrator of the local machine (i.e. the one
that Nagios is running on). The pager number/address can be used in notification commands by using
the $ADMINPAGER$ macro.

44

Object Definitions

What is Object Data?

Object data is simply a generic term I use to describe various data definitions you need in order to
monitor anything. Types of object definitions include:

Services

Service Groups

Hosts

Host Groups

Contacts

Contact Groups

Commands

Time Periods

Service Escalations

Service Dependencies

Host Escalations

Host Dependencies

Extended Host Information

Extended Service Information

Where Is Object Data Defined?

Object data is defined in one or more configuration files that you specify using the cfg_file and/or
cfg_dir directives in the main configuration file. You can include multiple object configuration files
and/or directories by using multiple cfg_file and/or cfg_dir directives.

How Is Object Data Defined?

Object definitions are defined in a template format. Click here for more information on defining object
data using this method.

45

CGI Configuration File Options

Notes

When creating and/or editing configuration files, keep the following in mind:

1. Lines that start with a ’#’ character are taken to be comments and are not processed

2. Variables names must begin at the start of the line - no white space is allowed before the name

3. Variable names are case-sensitive

Sample Configuration

A sample CGI configuration file is created when you run the configure script - you can find the sample
config file in the sample-config/ subdirectory of the Nagios distribution.

Config File Location

By default, Nagios expects the CGI configuration file to be named cgi.cfg and located in the config file
directory along with the main config file. If you need to change the name of the file or its location, you
can configure Apache to pass an environment variable named NAGIOS_CGI_CONFIG (which points to
the correct location) to the CGIs. See the Apache documentation for information on how to do this.

Index

Main configuration file location
Physical HTML path
URL HTML path
Authentication usage
Default user name
System/process information access
System/process command access
Configuration information access
Global host information access
Global host command access
Global service information access
Global service command access
Statusmap CGI background image
Default statusmap layout method
Statuswrl CGI include world
Default statuswrl layout method
CGI refresh rate
Audio alerts
Ping syntax

Main Configuration File Location

Format: main_config_file=<file_name>

Example: main_config_file=/usr/local/nagios/etc/nagios.cfg

46

This specifies the location of your main configuration file. The CGIs need to know where to find this file
in order to get information about configuration information, current host and service status, etc.

Physical HTML Path

Format: physical_html_path=<path>

Example: physical_html_path=/usr/local/nagios/share

This is the physical path where the HTML files for Nagios are kept on your workstation or server. Nagios
assumes that the documentation and images files (used by the CGIs) are stored in subdirectories called
docs/ and images/, respectively.

URL HTML Path

Format: url_html_path=<path>

Example: url_html_path=/nagios

If, when accessing Nagios via a web browser, you point to an URL like http://www.myhost.com/nagios,
this value should be /nagios. Basically, its the path portion of the URL that is used to access the Nagios
HTML pages.

Authentication Usage

Format: use_authentication=<0/1>

Example: use_authentication=1

This option controls whether or not the CGIs will use the authentication and authorization functionality
when determining what information and commands users have access to. I would strongly suggest that
you use the authentication functionality for the CGIs. If you decide not to use authentication, make sure
to remove the command CGI to prevent unauthorized users from issuing commands to Nagios. The CGI
will not issue commands to Nagios if authentication is disabled, but I would suggest removing it
altogether just to be on the safe side. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

0 = Don’t use authentication functionality

1 = Use authentication and authorization functionality (default)

Default User Name

Format: default_user_name=<username>

Example: default_user_name=guest

Setting this variable will define a default username that can access the CGIs. This allows people within a
secure domain (i.e., behind a firewall) to access the CGIs without necessarily having to authenticate to
the web server. You may want to use this to avoid having to use basic authentication if you are not using
a secure server, as basic authentication transmits passwords in clear text over the Internet.

47

Important: Do not define a default username unless you are running a secure web server and are sure
that everyone who has access to the CGIs has been authenticated in some manner! If you define this
variable, anyone who has not authenticated to the web server will inherit all rights you assign to this
user!

System/Process Information Access

Format: authorized_for_system_information=<user1>,<user2>,<user3>,...<usern>

Example: authorized_for_system_information=nagiosadmin,theboss

This is a comma-delimited list of names of authenticated users who can view system/process information
in the extended information CGI. Users in this list are not automatically authorized to issue
system/process commands. If you want users to be able to issue system/process commands as well, you
must add them to the authorized_for_system_commands variable. More information on how to setup
authentication and configure authorization for the CGIs can be found here.

System/Process Command Access

Format: authorized_for_system_commands=<user1>,<user2>,<user3>,...<usern>

Example: authorized_for_system_commands=nagiosadmin

This is a comma-delimited list of names of authenticated users who can issue system/process commands
via the command CGI. Users in this list are not automatically authorized to view system/process
information. If you want users to be able to view system/process information as well, you must add
them to the authorized_for_system_information variable. More information on how to setup
authentication and configure authorization for the CGIs can be found here.

Configuration Information Access

Format: authorized_for_configuration_information=<user1>,<user2>,<user3>,...<usern>

Example: authorized_for_configuration_information=nagiosadmin

This is a comma-delimited list of names of authenticated users who can view configuration information in
the configuration CGI. Users in this list can view information on all configured hosts, host groups,
services, contacts, contact groups, time periods, and commands. More information on how to setup
authentication and configure authorization for the CGIs can be found here.

Global Host Information Access

Format: authorized_for_all_hosts=<user1>,<user2>,<user3>,...<usern>

Example: authorized_for_all_hosts=nagiosadmin,theboss

This is a comma-delimited list of names of authenticated users who can view status and configuration
information for all hosts. Users in this list are also automatically authorized to view information for all
services. Users in this list are not automatically authorized to issue commands for all hosts or services. If
you want users able to issue commands for all hosts and services as well, you must add them to the

48

authorized_for_all_host_commands variable. More information on how to setup authentication and
configure authorization for the CGIs can be found here.

Global Host Command Access

Format: authorized_for_all_host_commands=<user1>,<user2>,<user3>,...<usern>

Example: authorized_for_all_host_commands=nagiosadmin

This is a comma-delimited list of names of authenticated users who can issue commands for all hosts via
the command CGI. Users in this list are also automatically authorized to issue commands for all services.
Users in this list are not automatically authorized to view status or configuration information for all
hosts or services. If you want users able to view status and configuration information for all hosts and
services as well, you must add them to the authorized_for_all_hosts variable. More information on how
to setup authentication and configure authorization for the CGIs can be found here.

Global Service Information Access

Format: authorized_for_all_services=<user1>,<user2>,<user3>,...<usern>

Example: authorized_for_all_services=nagiosadmin,theboss

This is a comma-delimited list of names of authenticated users who can view status and configuration
information for all services. Users in this list are not automatically authorized to view information for all
hosts. Users in this list are not automatically authorized to issue commands for all services. If you want
users able to issue commands for all services as well, you must add them to the
authorized_for_all_service_commands variable. More information on how to setup authentication and
configure authorization for the CGIs can be found here.

Global Service Command Access

Format: authorized_for_all_service_commands=<user1>,<user2>,<user3>,...<usern>

Example: authorized_for_all_service_commands=nagiosadmin

This is a comma-delimited list of names of authenticated users who can issue commands for all services
via the command CGI. Users in this list are not automatically authorized to issue commands for all hosts.
Users in this list are not automatically authorized to view status or configuration information for all
hosts. If you want users able to view status and configuration information for all services as well, you
must add them to the authorized_for_all_services variable. More information on how to setup
authentication and configure authorization for the CGIs can be found here.

Statusmap CGI Background Image

Format: statusmap_background_image=<image_file>

Example: statusmap_background_image=smbackground.gd2

49

This option allows you to specify an image to be used as a background in the statusmap CGI if you use
the user-supplied coordinates layout method. The background image is not be available in any other
layout methods. It is assumed that the image resides in the HTML images path (i.e.
/usr/local/nagios/share/images). This path is automatically determined by appending "/images" to
the path specified by the physical_html_path directive. Note: The image file can be in GIF, JPEG, PNG,
or GD2 format. However, GD2 format (preferably in uncompressed format) is recommended, as it will
reduce the CPU load when the CGI generates the map image.

Default Statusmap Layout Method

Format: default_statusmap_layout=<layout_number>

Example: default_statusmap_layout=4

This option allows you to specify the default layout method used by the statusmap CGI. Valid options
are:

<layout_number> Value Layout Method

0 User-defined coordinates

1 Depth layers

2 Collapsed tree

3 Balanced tree

4 Circular

5 Circular (Marked Up)

6 Circular (Balloon)

Statuswrl CGI Include World

Format: statuswrl_include=<vrml_file>

Example: statuswrl_include=myworld.wrl

This option allows you to include your own objects in the generated VRML world. It is assumed that the
file resides in the path specified by the physical_html_path directive. Note: This file must be a fully
qualified VRML world (i.e. you can view it by itself in a VRML browser).

Default Statuswrl Layout Method

Format: default_statuswrl_layout=<layout_number>

Example: default_statuswrl_layout=4

50

This option allows you to specify the default layout method used by the statuswrl CGI. Valid options
are:

<layout_number> Value Layout Method

0 User-defined coordinates

2 Collapsed tree

3 Balanced tree

4 Circular

CGI Refresh Rate

Format: refresh_rate=<rate_in_seconds>

Example: refresh_rate=90

This option allows you to specify the number of seconds between page refreshes for the status,
statusmap, and extinfo CGIs.

Audio Alerts

Formats: host_unreachable_sound=<sound_file>
host_down_sound=<sound_file>
service_critical_sound=<sound_file>
service_warning_sound=<sound_file>
service_unknown_sound=<sound_file>

Examples: host_unreachable_sound=hostu.wav
host_down_sound=hostd.wav
service_critical_sound=critical.wav
service_warning_sound=warning.wav
service_unknown_sound=unknown.wav

These options allow you to specify an audio file that should be played in your browser if there are
problems when you are viewing the status CGI. If there are problems, the audio file for the most critical
type of problem will be played. The most critical type of problem is on or more unreachable hosts, while
the least critical is one or more services in an unknown state (see the order in the example above). Audio
files are assumed to be in the media/ subdirectory in your HTML directory (i.e.
/usr/local/nagios/share/media).

Ping Syntax

Format: ping_syntax=<command>

Example: ping_syntax=/bin/ping -n -U -c 5 $HOSTADDRESS$

51

This option determines what syntax should be used when attempting to ping a host from the WAP
interface (using the statuswml CGI. You must include the full path to the ping binary, along with all
required options. The $HOSTADDRESS$ macro is substituted with the address of the host before the
command is executed.

52

Authentication And Authorization In The CGIs

Notes

Throughout these instructions I will be assuming that you are running the Apache web server on your
machine. If you are running some other web server, you will have to make some adjustments.

Definitions

Throughout these instructions I will be using the following terms, so you should understand what they
mean...

An authenticated user is an someone who has authenticated to the web server with a username and
password and has been granted access to the Nagios web interface.

An authenticated contact is an authenticated user whose username matches the short name of a
contact definition in your object configuration file(s).

Index

Setting up authenticated users
Enabling authentication/authorization functionality in the CGIs
Default permissions to CGI information
Granting additional permissions to CGI information
Authentication on secure web servers

Setting Up Authenticated Users

If you haven’t done so already, you’ll need to add the appropriate entries to your web server config file
to enable basic authentication for the CGI and HTML portions of the Nagios web interface. Instructions
for doing so can be found here.

Now that you’ve configured your web server to require authentication for the Nagios web interface,
you’ll need to specify who has access. This is done by using the htpasswd command supplied with
Apache.

Running the following command will create a new file called htpasswd.users in the /usr/local/nagios/etc
directory. It will also create an username/password entry for nagiosadmin. You will be asked to provide
a password that will be used when nagiosadmin authenticates to the web server.

htpasswd -c /usr/local/nagios/etc/htpasswd.users nagiosadmin

Continue adding more users until you’ve created an account for everyone you want to access the CGIs.
Use the following command to add additional users, replacing <username> with the actual username
you want to add. Note that the -c option is not used, since you already created the initial file.

htpasswd /usr/local/nagios/etc/htpasswd.users <username>

Okay, so you’re done with the first part of what needs to be done. At this point you should be prompted
for a username and password if you point your web browser to the Nagios web interface. If you have
problems getting user authentication to work at this point, read your webserver documentation for more
info.

53

http://httpd.apache.org/

Enabling Authentication/Authorization Functionality In The CGIs

The next thing you need to do is make sure that the CGIs are configured to use the authentication and
authorization functionality in determining what information and/or commands users have access to.
This is done be setting the use_authentication variable in the CGI configuration file to a non-zero value.
Example:

use_authentication=1

Okay, you’re now done with setting up basic authentication/authorization functionality in the CGIs.

Default Permissions To CGI Information

So what default permissions do users have in the CGIs by default when the
authentication/authorization functionality is enabled?

CGI Data Authenticated Contacts * Other Authenticated Users *

Host Status Information Yes No

Host Configuration Information Yes No

Host History Yes No

Host Notifications Yes No

Host Commands Yes No

Service Status Information Yes No

Service Configuration Information Yes No

Service History Yes No

Service Notifications Yes No

Service Commands Yes No

All Configuration Information No No

System/Process Information No No

System/Process Commands No No

Authenticated contacts * are granted the following permissions for each service for which they are contacts
(but not for services for which they are not contacts)...

Authorization to view service status information

Authorization to view service configuration information

Authorization to view history and notifications for the service

Authorization to issue service commands

Authenticated contacts * are granted the following permissions for each host for which they are contacts
(but not for hosts for which they are not contacts)...

Authorization to view host status information

Authorization to view host configuration information

Authorization to view history and notifications for the host

54

Authorization to issue host commands

Authorization to view status information for all services on the host

Authorization to view configuration information for all services on the host

Authorization to view history and notification information for all services on the host

Authorization to issue commands for all services on the host

It is important to note that by default no one is authorized for the following...

Viewing the raw log file via the showlog CGI

Viewing Nagios process information via the extended information CGI

Issuing Nagios process commands via the command CGI

Viewing host group, contact, contact group, time period, and command definitions via the
configuration CGI

You will undoubtably want to access this information, so you’ll have to assign additional rights for
yourself (and possibly other users) as described below...

Granting Additional Permissions To CGI Information

You can grant authenticated contacts or other authenticated users permission to additional information in
the CGIs by adding them to various authorization variables in the CGI configuration file. I realize that
the available options don’t allow for getting really specific about particular permissions, but its better
than nothing..

Additional authorization can be given to users by adding them to the following variables in the CGI
configuration file...

authorized_for_system_information

authorized_for_system_commands

authorized_for_configuration_information

authorized_for_all_hosts

authorized_for_all_host_commands

authorized_for_all_services

authorized_for_all_service_commands

CGI Authorization Requirements

If you are confused about the authorization needed to access various information in the CGIs, read the
Authorization Requirements section for each CGI as described here.

Authentication On Secured Web Servers

If your web server is located in a secure domain (i.e., behind a firewall) or if you are using SSL, you can
define a default username that can be used to access the CGIs. This is done by defining the
default_user_name option in the CGI configuration file. By defining a default username that can access
the CGIs, you can allow users to access the CGIs without necessarily having to authenticate to the web
server.. You may want to use this to avoid having to use basic web authentication, as basic
authentication transmits passwords in clear text over the Internet.

Important: Do not define a default username unless you are running a secure web server and are sure
that everyone who has access to the CGIs has been authenticated in some manner! If you define this
variable, anyone who has not authenticated to the web server will inherit all rights you assign to this
user!

55

56

Verifying Your Nagios Configuration

Verifying The Configuration From The Command Line

Once you’ve entered all the necessary data into the configuration files, its time to do a sanity check.
Everyone make mistakes from time to time, so its best to verify what you’ve entered. Nagios
automatically runs a "pre-flight check" before before it starts monitoring, but you also have the option of
running this check manually before attempting to start Nagios. In order to do this, you must start Nagios
with the -v command line argument as follows...

/usr/local/nagios/bin/nagios -v <main_config_file>

Note that you should be entering the path/filename of your main configuration file (i.e.
/usr/local/nagios/etc/nagios.cfg) as the second argument. Nagios will read your main configuration file and
all object configuration files and verify that they contain valid data.

Relationships Verified During The Pre-Flight Check

During the "pre-flight check", Nagios verifies that you have defined the data relationships necessary for
monitoring. Objects are all related and need to be setup properly in order for things to run. This is a list
of the basic things that Nagios attempts to check before it will start monitoring...

1. Verify that all contacts are a member of at least one contact group.

2. Verify that all contacts specified in each contact group are valid.

3. Verify that all hosts are a member of at least one host group.

4. Verify that all hosts specified in each host group are valid.

5. Verify that all hosts have at least one service associated with them.

6. Verify that all commands used in service and host checks are valid.

7. Verify that all commands used in service and host event handlers are valid.

8. Verify that all commands used in contact service and host notifications are valid.

9. Verify that all notification time periods specified for services, hosts, and contact are valid.

10. Verify that all service check time periods specified for services are valid.

Fixing Configuration Errors

If you’ve forgotten to enter some critical data or just plain screwed things up, Nagios will spit out a
warning or error message that should point you to the location of the problem. Error messages generally
print out the line in the configuration file that seems to be the source of the problem. On errors, Nagios
will often exit the pre-flight check and return to the command prompt after printing only the first error
that it has encountered. This is done so that one error does not cascade into multiple errors as the
remainder of the configuration data is verified. If you get any error messages you’ll need to go and edit
your configuration files to remedy the problem. Warning messages can generally be safely ignored, since
they are only recommendations and not requirements.

Where To Go From Here

Once you’ve verified your configuration files and fixed any errors, you can be reasonably sure that
Nagios will start monitoring the services you’ve specified. On to starting Nagios!

57

Starting Nagios

IMPORTANT: Before you actually start Nagios, you’ll have to make sure that you have configured it
properly and verified the config data!

Methods For Starting Nagios

There are basically four different ways you can start Nagios:

1. Manually, as a foreground process (useful for initial testing and debugging)

2. Manually, as a background process

3. Manually, as a daemon

4. Automatically at system boot

Let’s examine each method briefly...

Running Nagios Manually as a Foreground Process

If you enabled the debugging options when running the configure script (and recompiled Nagios), this
would be your first choice for testing and debugging. Running Nagios as a foreground process at a shell
prompt will allow you to more easily view what’s going on in the monitoring and notification processes.
To run Nagios as a foreground process for testing, invoke Nagios like this...

/usr/local/nagios/bin/nagios <main_config_file>

Note that you must specify the path/filename of the main configuration file (i.e.
/usr/local/nagios/etc/nagios.cfg) on the command line.

To stop Nagios at any time, just press CTRL-C. If you’ve enabled the debugging options you’ll probably
want to redirect the output to a file for easier review later.

Running Nagios Manually as a Background Process

To run Nagios as a background process, invoke it with an ampersand as follows...

/usr/local/nagios/bin/nagios <main_config_file> &

Note that you must specify the path/filename of the main configuration file (i.e.
/usr/local/nagios/etc/nagios.cfg) on the command line.

Running Nagios Manually as a Daemon

In order to run Nagios in daemon mode you must supply the -d switch on the command line as
follows...

/usr/local/nagios/bin/nagios -d <main_config_file>

Note that you must specify the path/filename of the main configuration file (i.e.
/usr/local/nagios/etc/nagios.cfg) on the command line.

Running Nagios Automatically at System Boot

When you have tested Nagios and are reasonably sure that it is not going to crash, you will probably
want to have it start automatically at boot time. To do this (in Linux) you will have to create a startup
script in your /etc/rc.d/init.d/ directory. You will also have to create a link to the script in the runlevel(s)

58

that you wish to have Nagios to start in. I’ll assume that you know what I’m talking about and are able
to do this.

A sample init script (named daemon-init) is created in the base directory of the Nagios distribution
when you run the configure script. You can install the sample script to your /etc/rc.d/init.d directory
using the ’make install-init’ command, as outlined in the installation instructions.

The sample init scripts are designed to work under Linux, so if you want to use them under FreeBSD,
Solaris, etc. you may have to do a little hacking...

Stopping and Restarting Nagios

Directions on how to stop and restart Nagios can be found here.

59

Stopping And Restarting Nagios

Once you have Nagios up and running, you may need to stop the process or reload the configuration
data "on the fly". This section describes how to do just that.

IMPORTANT: Before you restart Nagios, make sure that you have verified the configuration data using
the -v command line switch, especially if you have made any changes to your config files. If Nagios
encounters problem with one of the config files when it restarts, it will log an error and terminate.

Stopping And Restarting With The Init Script

If you have installed the sample init script to your /etc/rc.d/init.d directory you can stop and restart
Nagios easily. If you haven’t, skip this section and read how to do it manually below. I’ll assume that
you named the init script Nagios in the examples below...

Desired Action Command Description

Stop Nagios /etc/rc.d/init.d/nagios stop This kills the Nagios process

Restart Nagios /etc/rc.d/init.d/nagios restart
This kills the current Nagios process and then starts
Nagios up again

Reload
Configuration
Data

/etc/rc.d/init.d/nagios reload
Sends a SIGHUP to the Nagios process, causing it to
flush its current configuration data, reread the
configuration files, and start monitoring again

Stopping, restarting, and reloading Nagios are fairly simple with an init script and I would highly
recommend you use one if at all possible.

Stopping and Restarting Nagios Manually

If you aren’t using an init script to start Nagios, you’ll have to do things manually. First you’ll have to
find the process ID that Nagios is running under and then you’ll have to use the kill command to
terminate the application or make it reload the configuration data by sending it the proper signal.
Directions for doing this are outlined below...

Finding The Nagios Process ID

First off, you will need to know the process id that Nagios is running as. To do that, just type the
following command at a shell prompt:

ps axu | grep nagios

The output should look something like this:

nagios 6808 0.0 0.7 840 352 p3 S 13:44 0:00 grep nagios
nagios 11149 0.2 1.0 868 488 ? S Feb 27 6:33 /usr/local/nagios/bin/nagios nagios.cfg

From the program output, you will notice that Nagios was started by user nagios and is running as
process id 11149.

Manually Stopping Nagios

60

In order to stop Nagios, use the kill command as follows...

kill 11149

You should replace 11149 with the actual process id that Nagios is running as on your machine.

Manually Restarting Nagios

If you have modified the configuration data, you will want to restart Nagios and have it re-read the new
configuration. If you have changed the source code and recompiled the main Nagios executable you
should not use this method. Instead, stop Nagios by killing it (as outlined above) and restart it manually.
Restarting Nagios using the method below does not actually reload Nagios - it just causes Nagios to
flush its current configuration, re-read the new configuration, and start monitoring all over again. To
restart Nagios, you need to send the SIGHUP signal to Nagios. Assuming that the process id for Nagios
is 11149 (taken from the example above), use the following command:

kill -HUP 11149

Remember, you will need to replace 11149 with the actual process id that Nagios is running as on your
machine.

61

Nagios Plugins

What Are Plugins?

Plugins are compiled executables or scripts (Perl, shell, etc.) that can be run from a command line to
check the status or a host or service. Nagios uses the results from plugins to determine the current status
or hosts and services on your network. No, you can’t get away without using plugins - Nagios is useless
without them.

Obtaining Plugins

Plugin development for Nagios is being done at SourceForge. The Nagios plugin development project
page (where the latest version of by plugins can always be found) is located at
http://sourceforge.net/projects/nagiosplug/.

How Do I Use Plugin X?

Documentation on how to use individual plugins is not supplied with the core Nagios distribution. You
should refer to the latest plugin distribution for information on using plugins. Karl DeBisschop, lead
plugin developer/maintainer points out the following:

All plugins that comply with minimal development guideline for this project include internal
documentation. The documentation can be read executing plugin with the ’-h’ option (’--help’ if
long options are enabled). If the ’-h’ option does not work, that is a bug.

For example, if you want to know how the check_http plugin works or what options it accepts, you
should try executing one of the following commands:

./check_http --help

or

./check_http -h

Command Definition Examples For Services

It is important to note that command definitions found in sample config files in the core Nagios
distribution are probably not accurate as to command line parameters, etc when it comes to the plugins.
They are simply provided as examples of how to define commands.

Creating Custom Plugins

Creating your own plugins to perform custom host or service checks is easy. You can find information
on how to write plugins at http://sourceforge.net/projects/nagiosplug/. The developer guidelines can
be found at http://nagiosplug.sourceforge.net/developer-guidelines.html.

62

http://sourceforge.net/projects/nagiosplug/
http://sourceforge.net/projects/nagiosplug/
http://nagiosplug.sourceforge.net/developer-guidelines.html

Nagios Addons

Several "addons" are available for Nagios on the Nagios downloads page -
http://www.nagios.org/download/.

Addons are available for:

Managing the config files through a web interface

Monitoring remote hosts (*NIX, Windows, etc.)

Submitting passive checks from remote hosts

Simplifying/extending the notification logic

...and much more

63

http://www.nagios.org/download/

Determining Status and Reachability of Network Hosts

Monitoring Services on Down or Unreachable Hosts

The main purpose of Nagios is to monitor services that run on or are provided by physical hosts or
devices on your network. It should be obvious that if a host or device on your network goes down, all
services that it offers will also go down with it. Similarly, if a host becomes unreachable, Nagios will not
be able to monitor the services associated with that host.

Nagios recognizes this fact and attempts to check for such a scenario when there are problems with a
service. Whenever a service check results in a non-OK status level, Nagios will attempt to check and see
if the host that the service is running on is "alive". Typically this is done by pinging the host and seeing if
any response is received. If the host check commmand returns a non-OK state, Nagios assumes that
there is a problem with the host. In this situation Nagios will "silence" all potential alerts for services
running on the host and just notify the appropriate contacts that the host is down or unreachable. If the
host check command returns an OK state, Nagios will recognize that the host is alive and will send out
an alert for the service that is misbehaving.

Local Hosts

"Local" hosts are hosts that reside on the same network segment as the host running Nagios - no routers
or firewalls lay between them. Figure 1 shows an example network layout. Host A is running Nagios
and monitoring all other hosts and routers depicted in the diagram. Hosts B, C, D, E and F are all
considered to be "local" hosts in relation to host A.

The <parents> option in the host definition for a "local" host should be left blank, as local hosts have no
depencies or "parents" - that’s why they’re local.

Monitoring Local Hosts

Checking hosts that are on your local network is fairly simple. Short of someone accidentally (or
intentially) unplugging the network cable from one of your hosts, there isn’t too much that can go wrong
as far as checking network connectivity is concerned. There are no routers or external networks between
the host doing the monitoring and the other hosts on the local network.

If Nagios needs to check to see if a local host is "alive" it will simply run the host check command for that
host. If the command returns an OK state, Nagios assumes the host is up. If the command returns any
other status level, Nagios will assume the host is down.

Figure 1.

64

Remote Hosts

"Remote" hosts are hosts that reside on a different network segment than the host running Nagios. In the
figure above, hosts G, H, I, J, K, L and M are all considered to be "remote" hosts in relation to host A.

Notice that some hosts are "farther away" than others. Hosts H, I and J are one hop further away from
host A than host G (the router) is. From this observation we can construct a host dependency tree as
show below in Figure 2. This tree diagram will help us in deciding how to configure each host in Nagios.

The <parents> option in the host definition for a "remote" host should be the short name(s) of the host(s)
directly above it in the tree diagram (as show below). For example, the parent host for host H would be
host G. The parent host for host G is host F. Host F has no parent host, since it is on the network segment
as host A - it is a "local" host.

Figure 2.

65

Monitoring Remote Hosts

Checking the status of remote hosts is a bit more complicated that for local hosts. If Nagios cannot
monitor services on a remote host, it needs to determine whether the remote host is down or whether it
is unreachable. Luckily, the <parents> option allows Nagios to do this.

If a host check command for a remote host returns a non-OK state, Nagios will "walk" the depency tree
(as shown in the figure above) until it reaches the top (or until a parent host check results in an OK
state). By doing this, Nagios is able to determine if a service problem is the result of a down host, an
down network link, or just a plain old service failure.

DOWN vs. UNREACHABLE Notification Types

I get lots of email from people asking why Nagios is sending notifications out about hosts that are
unreachable. The answer is because you configured it to do that. If you want to disable UNREACHABLE
notifications for hosts, modify the notification_options argument of your host definitions to not include
the u (unreachable) option.

66

Network Outages

Introduction

The outages CGI is designed to help pinpoint the cause of network outages. For small networks this CGI
may not be particularly useful, but for larger ones it will be. Pinpointing the cause of outages will help
admins to more quickly find and resolve problems which are causing the biggest impact on the network.

It should be noted that the outages CGI will not attempt to find the exact cause of the problem, but will
rather locate the hosts on your network which seem to be causing the most problems. Delving into the
problem at a deeper level is left to the user, as there are any number of things which might actually be
the cause of the problem.

Diagrams

The diagrams below help to show how the outages CGI goes about determining the cause of network
outages. You can click on either image for a larger version...

67

Diagram 1

This diagram will serve as the basis for our example. All hosts shows in red are either down or unreachable (from the view of Nagios). All other hosts are up.

Diagram 2

This diagram pinpoints the causes of the network outages (from the view of Nagios), and shows various groups of hosts which are affected by the outages.

68

Determining The Cause Of Network Outages

So how does the outages CGI determine which hosts are the source of problems? "Problem" hosts must be
either in a DOWN or UNREACHABLE state and at least one of their immediate parent hosts must be UP. Hosts
which fit this criteria are flagged as being potential problem hosts.

In order to determine whether these flagged hosts are causing network outages, we must performs some
other tests...

If all of the immediate child hosts of one of these flagged hosts is DOWN or UNREACHABLE and has no
immediate parent host that is up, the flagged host is the cause of a network outage. If even one of the
immediate children of a flagged host does not pass this test, then the flagged host is not the cause of a
network outage.

Determining The Effects Of Network Outages

Along with telling you what hosts are causing problem on your network, the outages CGI will also tell
you how many hosts and services are affected by a particular problem host. How is this determined?
Take a look at diagram 2 above...

From the diagram it is clear that host 1 is blocking two child hosts (in domain A). Host 2 is solely
responsbile for blocking only itself (domain B) and host 3 is solely responsibly for blocking 7 hosts
(domain C). The outage effects of the two hosts in domain D are "shared" between hosts 2 and 3, since it
is unclear as to which host is actually the cause of the outage. If either host 2 or 3 was UP, the these hosts
might not be blocked.

The numbers of affected hosts for each problem host are as follows (the problem host is also included in
these figures):

Host 1: 3 affected hosts

Host 2: 3 affected hosts

Host 3: 10 affected hosts

Ranking Problems Based On Severity Level

The outages CGI will display all problem hosts, whether they are causing network outages or not.
However, the CGI will tell you how many of the problem hosts (if any) are causing network outages.

In order to display the problem hosts in a somewhat useful manner, they are sorted by the severity of
the effect they are having on the network. The severity level is determined by two things: The number of
hosts which are affected by problem host and the number of services which are affected. Hosts hold a
higher weight than services when it comes to calculating severity. The current code sets this weight ratio
at 4:1 (i.e. hosts are 4 times more important than individual services).

Assuming that all hosts in diagram 2 have an equal number of services associated with them, host 3
would be ranked as the most severe problem, while hosts 1 and 2 would have the same severity level.

69

Notifications

Introduction

I’ve had a lot of questions as to exactly how notifications work. This will attempt to explain exactly when
and how host and service notifications are sent out, as well as who receives them.

When Do Notifications Occur?

The decision to send out notifications is made in the service check and host check logic. Host and service
notifications occur in the following instances...

When a hard state change occurs. More information on state types and hard state changes can be
found here.

When a host or service remains in a hard non-OK state and the time specified by the
<notification_interval> option in the host or service definition has passed since the last notification
was sent out (for that specified host or service). If you don’t like the idea of recurring notifications,
set the <notification_interval> value to 0 - this prevents notifications from getting sent out more than
once for any given problem.

Who Gets Notified?

Each service definition has a <contact_groups> option that specifies what contact groups receive
notifications for that particular service. Each contact group can contain one or more individual contacts.
When Nagios sends out a service notification, it will notify each contact that is a member of any contact
groups specified in the <contactgroups> option of the service definition. Nagios realizes that any given
contact may be a member of more than one contact group, so it removes duplicate contact notifications
before it does anything.

Each host definition has a <contact_groups> option that specifies what contact groups receive
notifications for that particular host. When Nagios sends out a host notification, it will notify contacts
that are members of all the contact groups that that should be notified for that host. Nagios removes any
duplicate contacts from the notification list before it does anything.

What Filters Must Be Passed In Order For Notifications To Be Sent?

Just because there is a need to send out a host or service notification doesn’t mean that any contacts are
going to get notified. There are several filters that potential notifications must pass before they are
deemed worthy enough to be sent out. Even then, specific contacts may not be notified if their
notification filters do not allow for the notification to be sent to them. Let’s go into the filters that have to
be passed in more detail...

Program-Wide Filter:

The first filter that notifications must pass is a test of whether or not notifications are enabled on a
program-wide basis. This is initially determined by the enable_notifications directive in the main config
file, but may be changed during runtime from the web interface. If notifications are disabled on a
program-wide basis, no host or service notifications can be sent out - period. If they are enabled on a
program-wide basis, there are still other tests that must be passed...

Service and Host Filters:

70

The first filter for host or service notifications is a check to see if the host or service is in a period of
scheduled downtime. It it is in a scheduled downtime, no one gets notified. If it isn’t in a period of
downtime, it gets passed on to the next filter. As a side note, notifications for services are suppressed if
the host they’re associated with is in a period of scheduled downtime.

The second filter for host or service notification is a check to see if the host or service is flapping (if you
enabled flap detection). If the service or host is currently flapping, no one gets notified. Otherwise it
gets passed to the next filter.

The third host or service filter that must be passed is the host- or service-specific notification options.
Each service definition contains options that determine whether or not notifications can be sent out for
warning states, critical states, and recoveries. Similiarly, each host definition contains options that
determine whether or not notifications can be sent out when the host goes down, becomes unreachable,
or recovers. If the host or service notification does not pass these options, no one gets notified. If it does
pass these options, the notification gets passed to the next filter... Note: Notifications about host or
service recoveries are only sent out if a notification was sent out for the original problem. It doesn’t make
sense to get a recovery notification for something you never knew was a problem.

The fourth host or service filter that must be passed is the time period test. Each host and service
definition has a <notification_period> option that specifies which time period contains valid notification
times for the host or service. If the time that the notification is being made does not fall within a valid
time range in the specified time period, no one gets contacted. If it falls within a valid time range, the
notification gets passed to the next filter... Note: If the time period filter is not passed, Nagios will
reschedule the next notification for the host or service (if its in a non-OK state) for the next valid time
present in the time period. This helps ensure that contacts are notified of problems as soon as possible
when the next valid time in time period arrives.

The last set of host or service filters is conditional upon two things: (1) a notification was already sent
out about a problem with the host or service at some point in the past and (2) the host or service has
remained in the same non-OK state that it was when the last notification went out. If these two criteria
are met, then Nagios will check and make sure the time that has passed since the last notification went
out either meets or exceeds the value specified by the <notification_interval> option in the host or service
definition. If not enough time has passed since the last notification, no one gets contacted. If either
enough time has passed since the last notification or the two criteria for this filter were not met, the
notification will be sent out! Whether or not it actually is sent to individual contacts is up to another set
of filters...

Contact Filters:

At this point the notification has passed the program mode filter and all host or service filters and
Nagios starts to notify all the people it should. Does this mean that each contact is going to receive the
notification? No! Each contact has their own set of filters that the notification must pass before they
receive it. Note: Contact filters are specific to each contact and do not affect whether or not other contacts
receive notifications.

The first filter that must be passed for each contact are the notification options. Each contact definition
contains options that determine whether or not service notifications can be sent out for warning states,
critical states, and recoveries. Each contact definition also contains options that determine whether or
not host notifications can be sent out when the host goes down, becomes unreachable, or recovers. If the
host or service notification does not pass these options, the contact will not be notified. If it does pass
these options, the notification gets passed to the next filter... Note: Notifications about host or service
recoveries are only sent out if a notification was sent out for the original problem. It doesn’t make sense
to get a recovery notification for something you never knew was a problem...

71

The last filter that must be passed for each contact is the time period test. Each contact definition has a
<notification_period> option that specifies which time period contains valid notification times for the
contact. If the time that the notification is being made does not fall within a valid time range in the
specified time period, the contact will not be notified. If it falls within a valid time range, the contact
gets notified!

What Aren’t Any Notification Methods Incorporated Directly Into Nagios?

I’ve gotten several questions about why notification methods (paging, etc.) are not directly incorporated
into the Nagios code. The answer is simple - it just doesn’t make much sense. The "core" of Nagios is not
designed to be an all-in-one application. If service checks were embedded in Nagios’ core it would be
very difficult for users to add new check methods, modify existing checks, etc. Notifications work in a
similiar manner. There are a thousand different ways to do notifications and there are already a lot of
packages out there that handle the dirty work, so why re-invent the wheel and limit yourself to a bike
tire? Its much easier to let an external entity (i.e. a simple script or a full-blown messaging system) do the
messy stuff. Some messaging packages that can handle notifications for pagers and cellphones are listed
below in the resource section.

Notification Type Macro

When crafting your notification commands, you need to take into account what type of notification is
occurring. The $NOTIFICATIONTYPE$ macro contains a string that identifies exactly that. The table
below lists the possible values for the macro and their respective descriptions:

Value Description

PROBLEM

A service or host has just entered (or is still in) a problem state. If this is a
service notification, it means the service is either in a WARNING,
UNKNOWN or CRITICAL state. If this is a host notification, it means the
host is in a DOWN or UNREACHABLE state.

RECOVERY
A service or host recovery has occurred. If this is a service notification, it
means the service has just returned to an OK state. If it is a host notification,
it means the host has just returned to an UP state.

ACKNOWLEDGEMENT
This notification is an acknowledgement notification for a host or service
problem. Acknowledgement notifications are initiated via the web interface
by contacts for the particular host or service.

FLAPPINGSTART The host or service has just started flapping.

FLAPPINGSTOP The host or service has just stopped flapping.

Helpful Resources

There are many ways you could configure Nagios to send notifications out. Its up to you to decide
which method(s) you want to use. Once you do that you’ll have to install any necessary software and
configure notification commands in your config files before you can use them. Here are just a few
possible notification methods:

Email

Pager

Phone (SMS)

WinPopup message

Yahoo, ICQ, or MSN instant message

72

Audio alerts

etc...

Basically anything you can do from a command line can be tailored for use as a notification command.

If you’re interested in sending an alphanumeric notification to your pager or cellphone via email, you
may be find the following information useful. Here are a few links to various messaging service
providers’ websites that contain information on how to send alphanumeric messages to pagers and
phones...

Cigular

PageNet

SprintPCS (SMS phones)

If you’re looking for an alternative to using email for sending messages to your pager or cellphone,
check out these packages. They could be used in conjuction with Nagios to send out a notification via a
modem when a problem arises. That way you don’t have to rely on email to send notifications out
(remember, email may *not* work if there are network problems). I haven’t actually tried these packages
myself, but others have reported success using them...

Gnokii (SMS software for contacting Nokia phones via GSM network)

QuickPage (alphanumeric pager software)

Sendpage (paging software)

SMS Client (command line utility for sending messages to pagers and mobile phones)

If you want to try out a non-traditional method of notification, you might want to mess around with
audio alerts. If you want to have audio alerts played on the monitoring server (with synthesized speech),
check out Festival. If you’d rather leave the monitoring box alone and have audio alerts played on
another box, check out the Network Audio System (NAS) and rplay projects.

Lastly, there in an area in the contrib downloads section on the Nagios homepage for notification scripts
that have been contributed by users. You might find these scripts useful, as they take care of a lot of the
dirty work needed to send out alphanumeric notifications...

73

http://www.cingular.com/media/text_messaging
http://www.pagenet.com/sendamessage/emailpage.asp
http://www.messaging.sprintpcs.com/sms_help/send_email.html
http://www.gnokii.org/
http://www.qpage.org/
http://www.sendpage.org/
http://www.smsclient.org/
http://www.cstr.ed.ac.uk/projects/festival/
http://radscan.com/nas.html
http://rplay.doit.org/
http://www.nagios.org/

Plugin Theory

Introduction

Unlike many other monitoring tools, Nagios does not include any internal mechanisms for checking the
status of services, hosts, etc. Instead, Nagios relies on external programs (called plugins) to do the all the
dirty work. Nagios will execute a plugin whenever there is a need to check a service or host that is being
monitored. The plugin does something (notice the very general term) to perform the check and then
simply returns the results to Nagios. Nagios will process the results that it receives from the plugin and
take any necessary actions (running event handlers, sending out notifications, etc).

The image below show how plugins are separated fromt the core program logic in Nagios. Nagios
executes the plugins which then check local or remote resources or services of some type. When the
plugins have finished checking the resource or service, they simply pass the results of the check back to
Nagios for processing. A more complex diagram on how plugins work can be found in the
documentation on passive service checks.

The Upside

The good thing about the plugin architecture is that you can monitor just about anything you can think
of. If you can automate the process of checking something, you can monitor it with Nagios. There are
already a lot of plugins that have been created in order to monitor basic resources such as processor
load, disk usage, ping rates, etc. If you want to monitor something else, take a look at the documentation
on writing plugins and roll your own. Its simple!

The Downside

The only real downside to the plugin architecture is the fact that Nagios has absolutely no idea what it is
that you’re monitoring. You could be monitoring network traffic statistics, data error rates, room
temperate, CPU voltage, fan speed, processor load, disk space, or the ability of your super-fantastic
toaster to properly brown your bread in the morning... As such, Nagios cannot produce graphs of
changes to the exact values of resources you’re monitoring over time. It can only track changes in the
state of those resources. Only the plugins themselves know exactly what they’re monitoring and how to
perform checks. However, plugins can return optional performance data along with status information.
This performance data can then be passed on to external applications which could produce graphs of
service-specific information (i.e. disk space usage, processor load, etc.). More information on
performance data can be found here.

74

Using Plugins For Service Checks

The correlation between plugins and service checks should be fairly obvious. When Nagios needs to
check the status of a particular service that you have defined, it will execute the plugin you specified in
the <check_command> argument of the service definition. The plugin will check the status of the service
or resource you specify and return the results to Nagios.

Using Plugins For Host Checks

Using plugins to check the status of hosts may be a bit more difficult to understand. In each host
definition you use the <host_check_command> argument to specify a plugin that should be executed to
check the status of the host. Host checks are not performed on a regular basis - they are executed only as
needed, usually when there are problems with one or more services that are associated with the host.

Host checks can use the same plugins as service checks. The only real difference between the two types
of checks is in the interpretation of the plugin results. If a plugin that is used for a host check results in a
non-OK status, Nagios will believe that the host is down.

In most situations, you’ll want to use a plugin which checks to see if the host can be pinged, as this is the
most common method of telling whether or not a host is up. However, if you were monitoring some
kind of super-fantastic toaster, you might want to use a plugin that would check to see if the heating
elements turned on when the handle was pushed down. That would give a decent indication as to
whether or not the toaster was "alive".

75

Service Check Scheduling

Index

Introduction
Configuration options
Initial scheduling
Inter-check delay
Service interleaving
Max concurrent service checks
Time restraints
Normal scheduling
Scheduling during problems
Host checks
Scheduling delays
Scheduling example
Service definition options that affect scheduling

Introduction

I’ve gotten a lot of questions regarding how service checks are scheduled in certain situations, along
with how the scheduling differs from when the checks are actually executed and their results are
processed. I’ll try to go into a little more detail on how this all works...

Configuration Options

Before we begin, there are several configuration options that affect how service checks are scheduled,
executed, and processed. For starters, each service definition contains three options that determine when
and how each specific service check is scheduled and executed. Those three options include:

normal_check_interval

retry_check_interval

check_period

There are also four configuration options in the main configuration file that affect service checks. These
include:

service_inter_check_delay_method

service_interleave_factor

max_concurrent_checks

service_reaper_frequency

We’ll go into more detail on how all these options affect service check scheduling as we progress. First
off, let’s see how services are initially scheduled when Nagios first starts or restarts...

Initial Scheduling

When Nagios (re)starts, it will attempt to schedule the initial check of all services in a manner that will
minimize the load imposed on the local and remote hosts. This is done by spacing the initial service
checks out, as well as interleaving them. The spacing of service checks (also known as the inter-check
delay) is used to minimize/equalize the load on the local host running Nagios and the interleaving is
used to minimize/equalize load imposed on remote hosts. Both the inter-check delay and interleave
functions are discussed below.

76

Even though service checks are initially scheduled to balance the load on both the local and remote
hosts, things will eventually give in to the ensuing chaos and be a bit random. Reasons for this include
the fact that services are not all checked at the same interval, some services take longer to execute than
others, host and/or service problems can alter the timing of one or more service checks, etc. At least we
try to get things off to a good start. Hopefully the initial scheduling will keep the load on the local and
remote hosts fairly balanced as time goes by...

Note: If you want to view the initial service check scheduling information, start Nagios using the -s
command line option. Doing so will display basic scheduling information (inter-check delay, interleave
factor, first and last service check time, etc) and will create a new status log that shows the exact time
that all services are initially scheduled. Because this option will overwrite the status log, you should not
use it when another copy of Nagios is running. Nagios does not start monitoring anything when this
argument is used.

Inter-Check Delay

As mentioned before, Nagios attempts to equalize the load placed on the machine that is running Nagios
by equally spacing out initial service checks. The spacing between consecutive service checks is called
the inter-check delay. By giving a value to the service_inter_check_delay_method variable in the main
config file, you can modify how this delay is calculated. I will discuss how the "smart" calculation works,
as this is the setting you will want to use for normal operation.

When using the "smart" setting of the service_inter_check_delay_method variable, Nagios will calculate an
inter-check delay value by using the following calculation:

inter-check delay = (average check interval for all services) / (total number of services)

Let’s take an example. Say you have 1,000 services that each have a normal check interval of 5 minutes (obviously
some services are going to be checked at different intervals, but let’s look at an easy case...). The total check interal
time for all services is 5,000 (1,000 * 5). That means that the average check interval for each service is 5 minutes
(5,000 / 1,000). Give that information, we realize that (on average) we need to re-check 1,000 services every 5
minutes. This means that we should use an inter-check delay of 0.005 minutes (0.3 seconds) when spacing out the
initial service checks. By spacing each service check out by 0.3 seconds, we can somewhat guarantee that Nagios is
scheduling and/or executing 3 new service checks every second. By spacing the checks out evenly over time like
this, we can hope that the load on the local server that is running Nagios remains somewhat balanced.

Service Interleaving

As discussed above, the inter-check delay helps to equalize the load that Nagios imposes on the local host. What
about remote hosts? Is it necessary to equalize load on remote hosts? Why? Yes, it is important and yes, Nagios
can help out with this. Equalizing load on remote hosts is especially important with the advent of service check
parallelization. If you monitor a large number of services on a remote host and the checks were not spread out, the
remote host might think that it was the victim of a SYN attack if there were a lot of open connections on the same
port. Plus, attempting to equalize the load on hosts is just a nice thing to do...

By giving a value to the service_interleave_factor variable in the main config file, you can modify how the
interleave factor is calculated. I will discuss how the "smart" calculation works, as this will probably be the setting
you will want to use for normal operation. You can, however, use a pre-set interleave factor instead of having
Nagios calculate one for you. Also of note, if you use an interleave factor of 1, service check interleaving is basically
disabled.

When using the "smart" setting of the service_interleave_factor variable, Nagios will calculate an interleave factor
by using the following calculation:

77

interleave factor = ceil (total number of services / total number of hosts)

Let’s take an example. Say you have a total of 1,000 services and 150 hosts that you monitor. Nagios would
calculate the interleave factor to be 7. This means that when Nagios schedules initial service checks it will schedule
the first one it finds, skip the next 6, schedule the next one, and so on... This process will keep repeating until all
service checks have been scheduled. Since services are sorted (and thus scheduled) by the name of the host they are
associated with, this will help with minimizing/equalizing the load placed upon remote hosts.

The images below depict how service checks are scheduled when they are not interleaved
(service_interleave_factor=1) and when they are interleaved with the service_interleave_factor variable equal to 4.

Non-Interleaved Checks: Interleaved Checks:

Maximum Concurrent Service Checks

In order to prevent Nagios from consuming all of your CPU resources, you can restrict the maximum number of
concurrent service checks that can be running at any given time. This is controlled by using the
max_concurrent_checks option in the main config file.

The good thing about this setting is that you can regulate Nagios’ CPU usage. The down side is that service checks
may fall behind if this value is set too low. When it comes time to execute a service check, Nagios will make sure
that no more than x service checks are either being executed or waiting to have their results processed (where x is
the number of checks you specified for the max_concurrent_checks option). If that limit has been reached, Nagios
will postpone the execution of any pending checks until some of the previous checks have completed. So how does
one determine a reasonable value for the max_concurrent_checks option?

First off, you need to know the following things...

The inter-check delay that Nagios uses to initially schedule service checks (use the -s command line argument
to check this)

The frequency (in seconds) of service reaper events, as specified by the service_reaper_frequency variable in the

78

main config file.

A general idea of the average time that service checks actually take to execute (most plugins timeout after 10
seconds, so the average is probably going to be lower)

Next, use the following calculation to determine a reasonable value for the maximum number of concurrent checks
that are allowed...

max. concurrent checks = ceil(max(service reaper frequency , average check execution time) / inter-check delay)

The calculated number should provide a reasonable starting point for the max_concurrent_checks variable. You
may have to increase this value a bit if service checks are still falling behind schedule or decrease it if Nagios is
hogging too much CPU time.

Let’s say you are monitoring 875 services, each with an average check interval of 2 minutes. That means that your
inter-check delay is going to be 0.137 seconds. If you set the service reaper frequency to be 10 seconds, you can
calculate a rough value for the max. number of concurrent checks as follows (I’ll assume that the average execution
time for service checks is less than 10 seconds) ...

max. concurrent checks = ceil(10 / 0.137)

In this case, the calculated value is going to be 73. This makes sense because (on average) Nagios are going to be
executing just over 7 new service checks per second and it only processes service check results every 10 seconds.
That means at given time there will be a just over 70 service checks that are either being executed or waiting to
have their results processed. In this case, I would probably recommend bumping the max. concurrent checks value
up to 80, since there will be delays when Nagios processes service check results and does its other work. Obviously,
you’re going to have test and tweak things a bit to get everything running smoothly on your system, but hopefully
this provided some general guidelines...

Time Restraints

The check_period option determines the time period during which Nagios can run checks of the service. Regardless
of what status a particular service is in, if the time that it is actually executed is not a vaid time within the time
period that has been specified, the check will not be executed. Instead, Nagios will reschedule the service check for
the next valid time in the time period. If the check can be run (e.g. the time is valid within the time period), the
service check is executed.

Note: Even though a service check may not be able to be executed at a given time, Nagios may still schedule it to be
run at that time. This is most likely to happen during the initial scheduling of services, although it may happen in
other instances as well. This does not mean that Nagios will execute the check! When it comes time to actually
execute a service check, Nagios will verify that the check can be run at the current time. If it cannot, Nagios will
not execute the service check, but will instead just reschedule it for a later time. Don’t let this one throw you
confuse you! The scheduling and execution of service checks are two distinctly different (although related) things.

Normal Scheduling

In an ideal world you wouldn’t have network problems. But if that were the case, you wouldn’t need a network
monitoring tool. Anyway, when things are running smoothly and a service is in an OK state, we’ll call that
"normal". Service checks are normally scheduled at the frequency specified by the check_interval option. That’s it.
Simple, huh?

Scheduling During Problems

So what happens when there are problems with a service? Well, one of the things that happens is the service check
scheduling changes. If you’ve configured the max_attempts option of the service definition to be something greater
than 1, Nagios will recheck the service before deciding that a real problem exists. While the service is being
rechecked (up to max_attempts times) it is considered to be in a "soft" state (as described here) and the service

79

checks are rescheduled at a frequency determined by the retry_interval option.

If Nagios rechecks the service max_attempts times and it is still in a non-OK state, Nagios will put the service into
a "hard" state, send out notifications to contacts (if applicable), and start rescheduling future checks of the service
at a frequency determined by the check_interval option.

As always, there are exceptions to the rules. When a service check results in a non-OK state, Nagios will check the
host that the service is associated with to determine whether or not is up (see the note below for info on how this is
done). If the host is not up (i.e. it is either down or unreachable), Nagios will immediately put the service into a
hard non-OK state and it will reset the current attempt number to 1. Since the service is in a hard non-OK state,
the service check will be rescheduled at the normal frequency specified by the check_interval option instead of the
retry_interval option.

Host Checks

Unlike service checks, host checks are not scheduled on a regular basis. Instead they are run on demand, as Nagios
sees a need. This is a common question asked by users, so it needs to be clarified.

One instance where Nagios checks the status of a host is when a service check results in a non-OK status. Nagios
checks the host to decide whether or not the host is up, down, or unreachable. If the first host check returns a
non-OK state, Nagios will keep pounding out checks of the host until either (a) the maximum number of host
checks (specified by the max_attempts option in the host definition) is reached or (b) a host check results in an OK
state.

Also of note - when Nagios is check the status of a host, it holds off on doing anything else (executing new service
checks, processing other service check results, etc). This can slow things down a bit and cause pending service
checks to be delayed for a while, but it is necessary to determine the status of the host before Nagios can take any
further action on the service(s) that are having problems.

Scheduling Delays

It should be noted that service check scheduling and execution is done on a best effort basis. Individual service
checks are considered to be low priority events in Nagios, so they can get delayed if high priority events need to be
executed. Examples of high priority events include log file rotations, external command checks, and service reaper
events. Additionally, host checks will slow down the execution and processing of service checks.

Scheduling Example

The scheduling of service checks, their execution, and the processing of their results can be a bit difficult to
understand, so let’s look at a simple example. Look at the diagram below - I’ll refer to it as I explain how things are
done.

Image 5.

80

First off, the Xn events are service reaper events that are scheduled at a frequency specified by the

service_reaper_frequency option in the main config file. Service reaper events do the work of gathering and
processing service check results. They serve as the core logic for Nagios, kicking off host checks, event handlers and
notifications as necessary.

For the example here, a service has been scheduled to be executed at time A. However, Nagios got behind in its
event queue, so the check was not actually executed until time B. The service check finished executing at time C, so
the difference between points C and B is the actual amount of time that the check was running.

The results of the service check are not processed immediately after the check is done executing. Instead, the results
are saved for later processing by a service reaper event. The next service reaper event occurs at time D, so that is
approximately the time that the results are processed (the actual time may be later than D since other service check
results may be processed before this one).

At the time that the service reaper event processes the service check results, it will reschedule the next service check
and place it into Nagios’ event queue. We’ll assume that the service check resulted in an OK status, so the next
check at time E is scheduled after the originally scheduled check time by a length of time specified by the
check_interval option. Note that the service is not rescheduled based off the time that it was actually executed!
There is one exception to this (isn’t there always?) - if the time that the service check is actually executed (point B)
occurs after the next service check time (point E), Nagios will compensate by adjusting the next check time. This is
done to ensure that Nagios doesn’t go nuts trying to keep up with service checks if it comes under heavy load.
Besides, what’s the point of scheduling something in the past...?

Service Definition Options That Affect Scheduling

Each service definition contains a normal_check_interval and retry_check_interval option. Hopefully this will
clarify what these two options do, how they relate to the max_check_attempts option in the service definition, and
how they affect the scheduling of the service.

First off, the normal_check_interval option is the interval at which the service is checked under "normal"
circumstances. "Normal" circumstances mean whenever the service is in an OK state or when its in a hard
non-OK state.

When a service first changes from an OK state to a non-OK state, Nagios gives you the ability to temporarily slow
down or speed up the interval at which subsequent checks of that service will occur. When the service first changes
state, Nagios will perform up to max_check_attempts-1 retries of the service check before it decides its a real
problem. While the service is being retried, it is scheduled according to the retry_check_interval option, which
might be faster or slower than the normal normal_check_interval option. While the service is being rechecked (up to
max_check_attempts-1 times), the service is in a soft state. If the service is rechecked max_check_attempts-1 times
and it is still in a non-OK state, the service turns into a hard state and is subsequently rescheduled at the normal
rate specified by the check_interval option.

On a side note, it you specify a value of 1 for the max_check_attempts option, the service will not ever be checked at
the interval specified by the retry_check_interval option. Instead, it immediately turns into a hard state and is
subsequently rescheduled at the rate specified by the normal_check_interval option.

81

State Types

Introduction

The current state of services and hosts is determined by two components: the status of the service or host
(i.e. OK, WARNING, UP, DOWN, etc.) and the type of state it is in. There are two state types in Nagios -
"soft" states and "hard" states. State types are a crucial part of Nagios’ monitoring logic. They are used to
determine when event handlers are executed and when notifications are sent out.

Service and Host Check Retries

In order to prevent false alarms, Nagios allows you to define how many times a service or host check
will be retried before the service or host is considered to have a real problem. The maximum number of
retries before a service or host check is considered to have a real problem is controlled by the
<max_check)attempts> option in the service and host definitions, respectively. Depending on what
attempt a service or host check is currently on determines what type of state it is is. There are a few
exceptions to this in the service monitoring logic, but we’ll ignore those for now. Let’s take a look at the
different service state types...

Soft States

Soft states occur for services and hosts in the following situations...

When a service or host check results in a non-OK state and it has not yet been (re)checked the
number of times specified by the <max_check_attempts> option in the service or host definition. Let’s
call this a soft error state...

When a service or host recovers from a soft error state. This is considered to be a soft recovery.

Soft State Events

What happens when a service or host is in a soft error state or experiences a soft recovery?

The soft error or recovery is logged if you enabled the log_service_retries or log_host_retries options
in the main configuration file.

Event handlers are executed (if you defined any) to handle the soft error or recovery for the service
or host. (Before any event handler is executed, the $HOSTSTATETYPE$ or
$SERVICESTATETYPE$ macro is set to "SOFT").

Nagios does not send out notifications to any contacts because there is (or was) no "real" problem
with the service or host.

As can be seen, the only important thing that really happens during a soft state is the execution of event
handlers. Using event handlers can be particularly useful if you want to try and proactively fix a
problem before it turns into a hard state. More information on event handlers can be found here.

Hard States

Hard states occur for services in the following situations (hard host states are discussed later)...

When a service check results in a non-OK state and it has been (re)checked the number of times
specified by the <max_check_attempts> option in the service definition. This is a hard error state.

When a service recovers from a hard error state. This is considered to be a hard recovery.

When a service check results in a non-OK state and its corresponding host is either DOWN or
UNREACHABLE. This is an exception to the general monitoring logic, but makes perfect sense. If
the host isn’t up why should we try and recheck the service?

82

Hard states occur for hosts in the following situations...

When a host check results in a non-OK state and it has been (re)checked the number of times
specified by the <max_check_attempts> option in the host definition. This is a hard error state.

When a host recovers from a hard error state. This is considered to be a hard recovery.

Hard State Changes

Before I discuss what happens when a host or service is in a hard state, you need to know about hard
state changes. Hard state changes occur when a service or host...

changes from a hard OK state to a hard non-OK state

changes from a hard non-OK state to a hard OK-state

changes from a hard non-OK state of some kind to a hard non-OK state of another kind (i.e. from a
hard WARNING state to a hard UNKNOWN state)

Hard State Events

What happens when a service or host is in a hard error state or experiences a hard recovery? Well, that
depends on whether or not a hard state change (as described above) has occurred.

If a hard state change has occurred and the service or host is in a non-OK state the following things will
occur..

The hard service or host problem is logged.

Event handlers are executed (if you defined any) to handle the hard problem for the service or host.
(Before any event handler is executed, the $HOSTSTATETYPE$ or $SERVICESTATETYPE$ macro
is set to "HARD").

Contacts will be notified of the service or host problem (if the notification logic allows it).

If a hard state change has occurred and the service or host is in an OK state the following things will
occur..

The hard service or host recovery is logged.

Event handlers are executed (if you defined any) to handle the hard recovery for the service or host.
(Before any event handler is executed, the $HOSTSTATETYPE$ or $SERVICESTATETYPE$ macro
is set to "HARD").

Contacts will be notified of the service or host recovery (if the notification logic allows it).

If a hard state change has NOT occurred and the service or host is in a non-OK state the following things
will occur..

Contacts will be re-notified of the service or host problem (if the notification logic allows it).

If a hard state change has NOT occurred and the service or host is in an OK state nothing happens. This
is because the service or host is in an OK state and was the last time it was checked as well.

83

Time Periods
or...

"Is This a Good Time?"

Introduction

Time periods allow you to have greater control over when service checks may be run, when host and
service notifications may be sent out, and when contacts may receive notifications. With this newly
added power come some potential problems, as I will describe later. I was initially very hesitant to
introduce time periods because of these snafus. I’ll leave it up to you to decide what it right for your
particular situation...

How Time Periods Work With Service Checks

Without the implementation of time periods, Nagios would monitor all services that you had defined 24
hours a day, 7 days a week. While this is fine for most services that need monitoring, it doesn’t work out
so well for others. For instance, do you really need to monitor printers all the time when they’re really
only used during normal business hours? Perhaps you have development servers which you would
prefer to have up, but aren’t "mission critical" and therefore don’t have to be monitored for problems
over the weekend. Time period definitions now allow you to have more control over when such services
may be checked...

The <check_period> argument of each service definition allows you to specify a time period that tells
Nagios when the service can be checked. When Nagios attempts to reschedule a service check, it will
make sure that the next check falls within a valid time range within the defined time period. If it doesn’t,
Nagios will adjust the next service check time to coincide with the next "valid" time in the specified time
period. This means that the service may not get checked again for another hour, day, or week, etc.

Potential Problems With Service Checks

If you use time periods which do not cover a 24x7 range, you will run into problems, especially if a
service (or its corresponding host) is down when the check is delayed until the next valid time in the
time period. Here are some of those problems...

1. Contacts will not get re-notified of problems with a service until the next service check can be run.

2. If a service recovers during a time that has been excluded from the check period, contacts will not be
notified of the recovery.

3. The status of the service will appear unchanged (in the status log and CGI) until it can be checked
next.

4. If all services associated with a particular host are on the same check time period, host problems or
recoveries will not be recognized until one of the services can be checked (and therefore
notifications may be delayed or not get sent out at all).

Limiting the service check period to anything other than a 24 hour a day, 7 days a week basis can cause a
lot of problems. Well, not really problems so much as annoyances and inaccuracies... Unless you have
good reason to do so, I would strongly suggest that you set the <check_period> argument of each service
definition to a "24x7" type of time period.

How Time Periods Work With Contact Notifications

Probably the best use of time periods is to control when notifications can be sent out to contacts. By
using the <service_notification_period> and <host_notification_period> arguments in contact definitions,
you’re able to essentially define an "on call" period for each contact. Note that you can specify different

84

time periods for host and service notifications. This is helpful if you want host notifications to go out to
the contact any day of the week, but only have service notifications get sent to the contact on weekdays.
It should be noted that these two notification periods should cover any time that the contact can be
notified. You can control notification times for specific services and hosts on a one-by-one basis as
follows...

By setting the <notification_period> argument of the host definition, you can control when Nagios is
allowed to send notifications out regarding problems or recoveries for that host. When a host
notification is about to get sent out, Nagios will make sure that the current time is within a valid range in
the <notification_period> time period. If it is a valid time, then Nagios will attempt to notify each contact
of the host problem. Some contacts may not receive the host notification if their <host_notification_period>
does not allow for host notifications at that time. If the time is not valid within the <notification_period>
defined for the host, Nagios will not send the notification out to any contacts.

You can control notification times for services in a similiar manner to host notification times. By setting
the <notification_period> argument of the service definition, you can control when Nagios is allowed to
send notifications out regarding problems or recoveries for that service. When a service notification is
about to get sent out, Nagios will make sure that the current time is within a valid range in the
<notification_period> time period. If it is a valid time, then Nagios will attempt to notify each contact of
the service problem. Some contacts may not receive the service notification if their
<svc_notification_period> does not allow for service notifications at that time. If the time is not valid
within the <notification_period> defined for the service, Nagios will not send the notification out to any
contacts.

Potential Problems With Contact Notifications

There aren’t really any major problems that you’ll run into with using time periods to create custom
contact notification times. You do, however, need to be aware that contacts may not always be notified
of a service or host problem or recovery. If the time isn’t right for both the host or service notification
period and the contact notification period, the notification won’t go through. Once you weigh the
potential problems of time-restricted notifications against your needs, you should be able to come up
with a configuration that works well for your situation.

Conclusion

Time periods allow you to have greater control of how Nagios performs its monitoring and notification
functions, but can lead to problems. If you are unsure of what type of time periods to implement, or if
you are having problems with your current implementation, I would suggest using "24x7" time periods
(where all times are valid for each day of the week). Feel free to contact me if you have questions or are
running into problems.

85

Event Handlers

Introduction

Event handlers are optional commands that are executed whenever a host or service state change occurs.
An obvious use for event handlers (especially with services) is the ability for Nagios to proactively fix
problems before anyone is notified. Another potential use for event handlers might be to log service or
host events to an external database.

Event Handler Types

There are two main types of event handlers than can be defined - service event handlers and host event
handlers. Event handler commands are (optionally) defined in each host and service definition. Because
these event handlers are only associated with particular services or hosts, I will call these "local" event
handlers. If a local event handler has been defined for a service or host, it will be executed when that
host or service changes state.

You may also specify global event handlers that should be run for every host or service state change by
using the global_host_event_handler and global_service_event_handler options in your main
configuration file. Global event handlers are run immediately prior to running a local service or host
event handler.

When Are Event Handler Commands Executed?

Service and host event handler commands are executed when a service or host:

is in a "soft" error state

initially goes into a "hard" error state

recovers from a "soft" or "hard" error state

What are "soft" and "hard" states you ask? They are described here .

Event Handler Execution Order

Global event handlers are executed before any local event handlers that you have configured for specific
hosts or services.

Writing Event Handler Commands

In most cases, event handler commands will be shell or perl scripts. At a minimum, the scripts should
take the following macros as arguments:

Service event handler macros: $SERVICESTATE$, $SERVICESTATETYPE$, $SERVICEATTEMPT$
Host event handler macros: $HOSTSTATE$, $HOSTSTATETYPE$, $HOSTATTEMPT$

The scripts should examine the values of the arguments passed in and take any necessary action based
upon those values. The best way to understand how event handlers should work is to see and example.
Lucky for you, one is provided below. There are also some sample event handler scripts included in the
eventhandlers/ subdirectory of the Nagios distribution. Some of these sample scripts demonstrate the
use of external commands to implement redundant monitoring hosts.

Permissions For Event Handler Commands

86

Any event handler commands you configure will execute with the same permissions as the user under
which Nagios is running on your machine. This presents a problem with scripts that attempt to restart
system services, as root privileges are generally required to do these sorts of tasks.

Ideally you should evaluate the types of event handlers you will be implementing and grant just enough
permissions to the Nagios user for executing the necessary system commands. You might want to try
using sudo to accomplish this. Implementation of this is your job, so read the docs and decide if its what
you need.

Debugging Event Handler Commands

When you are debugging event handler commands, I would highly recommend that you enable logging
of service retries, host retries, and event handler commands. All of these logging options are configured
in the main configuration file. Enabling logging for these options will allow you to see exactly when and
why event handler commands are being executed.

When you’re done debugging your event handler commands you’ll probably want to disable logging of
service and host retries. They can fill up your log file fast, but if you have enabled log rotation you might
not care.

Service Event Handler Example

The example below assumes that you are monitoring the HTTP server on the local machine and have
specified restart-httpd as the event handler command for the HTTP service definition. Also, I will be
assuming that you have set the <max_check_attempts> option for the service to be a value of 4 or greater
(i.e. the service is checked 4 times before it is considered to have a real problem). An example service
definition (w/ only the fields we discuss) might look like this...

define service{
 host_name somehost
 service_description HTTP
 max_check_attempts 4
 event_handler restart-httpd
 ...other service variables...
 }

Once the service has been defined with an event handler, we must define that event handler as a
command. Notice the macros in the command line that I am passing to the event handler - these are
important!

define command{
 command_name restart-httpd
 command_line /usr/local/nagios/libexec/eventhandlers/restart-httpd $SERVICESTATE$ $SERVICESTATETYPE$ $SERVICEATTEMPT$
 }

Now, let’s actually write the event handler script (this is the
/usr/local/nagios/libexec/eventhandlers/restart-httpd file).

87

http://www.courtesan.com/sudo/sudo.html

#!/bin/sh
#
Event handler script for restarting the web server on the local machine
#
Note: This script will only restart the web server if the service is
retried 3 times (in a "soft" state) or if the web service somehow
manages to fall into a "hard" error state.
#

What state is the HTTP service in?
case "$1" in
OK)
 # The service just came back up, so don’t do anything...
 ;;
WARNING)
 # We don’t really care about warning states, since the service is probably still running...
 ;;
UNKNOWN)
 # We don’t know what might be causing an unknown error, so don’t do anything...
 ;;
CRITICAL)
 # Aha! The HTTP service appears to have a problem - perhaps we should restart the server...

 # Is this a "soft" or a "hard" state?
 case "$2" in

 # We’re in a "soft" state, meaning that Nagios is in the middle of retrying the
 # check before it turns into a "hard" state and contacts get notified...
 SOFT)

 # What check attempt are we on? We don’t want to restart the web server on the first
 # check, because it may just be a fluke!
 case "$3" in

 # Wait until the check has been tried 3 times before restarting the web server.
 # If the check fails on the 4th time (after we restart the web server), the state
 # type will turn to "hard" and contacts will be notified of the problem.
 # Hopefully this will restart the web server successfully, so the 4th check will
 # result in a "soft" recovery. If that happens no one gets notified because we
 # fixed the problem!
 3)
 echo -n "Restarting HTTP service (3rd soft critical state)..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;

 # The HTTP service somehow managed to turn into a hard error without getting fixed.
 # It should have been restarted by the code above, but for some reason it didn’t.
 # Let’s give it one last try, shall we?
 # Note: Contacts have already been notified of a problem with the service at this
 # point (unless you disabled notifications for this service)
 HARD)
 echo -n "Restarting HTTP service..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;
esac
exit 0

The sample script provided above will attempt to restart the web server on the local machine in two
different instances - after the HTTP service is being retried for the 3rd time (in an "soft" error state) and
after the service falls into a "hard" state. The "hard" state situation shouldn’t really occur, since the script
should restart the service when its still in a "soft" state (i.e. the 3rd check retry), but its left as a fallback
anyway.

It should be noted that the service event handler will only be execute the first time that the service falls
into a "hard" state. This will prevent Nagios from continuously executing the script to restart the web
server when it is in a "hard" state.

88

89

External Commands

Introduction

Nagios can process commands from external applications (including CGIs - see the command CGI for an
example) and alter various aspects of its monitoring functions based on the commands it receives.

Enabling External Commands

By default, Nagios does not check for or process any external commands. If you want to enable external
command processing, you’ll have to do the following...

Enable external command checking with the check_external_commands option

Set the frequency of command checks with the command_check_interval option

Specify the location of the command file with the command_file option. Its best to put the external
command file in its own directory (i.e. /usr/local/nagios/var/rw).

Setup proper permissions on the directory containing the external command file. Details on how to
do this can be found here.

When Does Nagios Check For External Commands?

At regular intervals specified by the command_check_interval option in the main configuration file

Immediately after event handlers are executed. This is in addtion to the regular cycle of external
command checks and is done to provide immediate action if an event handler submits commands to
Nagios.

Using External Commands

External commands can be used to accomplish a variety of things while Nagios is running. Example of
what can be done include temporarily disabling notifications for services and hosts, temporarily
disabling service checks, forcing immediate service checks, adding comments to hosts and services, etc.

Command Format

External commands that are written to the command file have the following format...

[time] command_id;command_arguments

...where time is the time (in time_t format) that the external application or CGI committed the external
command to the command file. Some of the commands that are available are described in the table
below, along with their command_id and a description of their command_arguments.

Implemented Commands

A full listing of external commands that can be used (along with examples of how to use them) can be
found online at the following URL:

http://www.nagios.org/developerinfo/externalcommands/

90

http://www.nagios.org/developerinfo/externalcommands/

Indirect Host and Service Checks

Introduction

Chances are, many of the services that you’re going to be monitoring on your network can be checked
directly by using a plugin on the host that runs Nagios. Examples of services that can be checked directly
include availability of web, email, and FTP servers. These services can be checked directly by a plugin
from the Nagios host because they are publicly accessible resources. However, there are a number of
things you may be interested in monitoring that are not as publicly accessible as other services. These
"private" resources/services include things like disk usage, processor load, etc. on remote machines.
Private resources like these cannot be checked without the use of an intermediary agent. Service checks
which require an intermediary agent of some kind to actually perform the check are called indirect
checks.

Indirect checks are useful for:

Monitoring "local" resources (such as disk usage, processer load, etc.) on remote hosts

Monitoring services and hosts behind firewalls

Obtaining more realistic results from checks of time-sensitive services between remote hosts (i.e.
ping response times between two remote hosts)

There are several methods for performing indirect active checks (passive checks are not discussed here),
but I will only talk about how they can be done by using the nrpe addon.

Indirect Service Checks

The diagram below shows how indirect service checks work. Click the image for a larger version...

91

Multiple Indirected Service Checks

If you are monitoring servers that lie behind a firewall (and the host running Nagios is outside that
firewall), checking services on those machines can prove to be a bit of a pain. Chances are that you are
blocking most incoming traffic that would normally be required to perform the monitoring. One
solution for performing active checks (passive checks could also be used) on the hosts behind the
firewall would be to poke a tiny hold in the firewall filters that allow the Nagios host to make calls to the

92

nrpe daemon on one host inside the firewall. The host inside the firewall could then be used as an
intermediary in performing checks on the other servers inside the firewall.

The diagram below show how multiple indirect service checks work. Notice how the nrpe daemon is
running on hosts #1 and #2. The copy that runs on host #2 is used to allow the nrpe agent on host #1 to
perform a check of a "private" service on host #2. "Private" services are things like process load, disk
usage, etc. that are not directly exposed like SMTP, FTP, and web services. Click on the diagram for a
larger image...

93

94

Indirect Host Checks

Indirect host checks work on the same principle as indirect service checks. Basically, the plugin used in
the host check command asks an intermediary agent (i.e. a daemon running on a remote host) to
perform the host check for it. Indirect host checks are useful when the remote hosts being monitored are
located behind a firewall and you want to restrict inbound monitoring traffic to a particular machine.
That machine (remote host #1 in the diagram below) performs will perform the host check and return
the results back to the top level check_nrpe plugin (on the central server). It should be noted that with this
setup comes potential problems. If remote host #1 goes down, the check_nrpe plugin will not be able to
contact the nrpe daemon and Nagios will believe that remote hosts #2, #3, and #4 are down, even though
this may not be the case. If host #1 is your firewall machine, then the problem isn’t really an issue
because Nagios will detect that it is down and mark hosts #2, #3, and #4 as being unreachable.

The diagram below shows how an indirect host check can be performed by using the nrpe daemon and
check_nrpe plugin. Click the image for a larger version.

95

96

Passive Host and Service Checks

Introduction

On of the features of Nagios is that is can process host and service check results that are submitted by
external applications. Host and service checks which are performed and submitted to Nagios by external
apps are called passive checks. Passive checks can be contrasted with active checks, which are host or
service checks that have been initiated by Nagios.

Why The Need For Passive Checks?

Passive checks are useful for monitoring services that are:

located behind a firewall, and can therefore not be checked actively from the host running Nagios

asynchronous in nature and can therefore not be actively checked in a reliable manner (e.g. SNMP
traps, security alerts, etc.)

Passive host and service checks are also useful when configured a distributed monitoring setup.

Passive Service Checks vs. Passive Host Checks

Passive host and service checks function in a similiar manner, but there are some important limitations
in regards to passive host checks. Read below for more information about the limitations with passive
host checks.

How Do Passive Service Checks Work?

The only real difference between active and passive checks is that active checks are initiated by Nagios,
while passive checks are performed by external applications. Once an external application has
performed a service check (either actively or by having received an synchronous event like an SNMP
trap or security alert), it submits the results of the service "check" to Nagios through the external
command file.

The next time Nagios processes the contents of the external command file, it will place the results of all
passive service checks into a queue for later processing. The same queue that is used for storing results
from active checks is also used to store the results from passive checks.

Nagios will periodically execute a service reaper event and scan the service check result queue. Each
service check result, regardless of whether the check was active or passive, is processed in the same
manner. The service check logic is exactly the same for both types of checks. This provides a seamless
method for handling both active and passive service check results.

How Do External Apps Submit Service Check Results?

External applications can submit service check results to Nagios by writing a
PROCESS_SERVICE_CHECK_RESULT external command to the external command file.

The format of the command is as follows:

[<timestamp>]
PROCESS_SERVICE_CHECK_RESULT;<host_name>;<description>;<return_code>;<plugin_output>

where...

97

timestamp is the time in time_t format (seconds since the UNIX epoch) that the service check was
perfomed (or submitted). Please note the single space after the right bracket.

host_name is the short name of the host associated with the service in the service definition

description is the description of the service as specified in the service definition

return_code is the return code of the check (0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN)

plugin_output is the text output of the service check (i.e. the plugin output)

Note that in order to submit service checks to Nagios, a service must have already been defined in the
object configuration file! Nagios will ignore all check results for services that had not been configured
before it was last (re)started.

If you only want passive results to be provided for a specific service (i.e. active checks should not be
performed), simply set the active_checks_enabled member of the service definition to 0. This will prevent
Nagios from ever actively performing a check of the service. Make sure that the passive_checks_enabled
member of the service definition is set to 1. If it isn’t, Nagios won’t process passive checks for the service!

An example shell script of how to submit passive service check results to Nagios can be found in the
documentation on volatile services.

Submitting Passive Service Check Results From Remote Hosts

If an application that resides on the same host as Nagios is sending passive service check results, it can
simply write the results directly to the external command file as outlined above. However, applications
on remote hosts can’t do this so easily. In order to allow remote hosts to send passive service check
results to the host that runs Nagios, I’ve developed the nsca addon. The addon consists of a daemon that
runs on the Nagios hosts and a client that is executed from remote hosts. The daemon will listen for
connections from remote clients, perform some basic validation on the results being submitted, and then
write the check results directly into the external command file (as described above). More information
on the nsca addon can be found here...

Using Both Active And Passive Service Checks

Unless you’re implementing a distributed monitoring environment with the central server accepting
only passive service checks (and not performing any active checks), you’ll probably be using both types
of checks in your setup. As mentioned before, active checks are more suited for services that lend
themselves to periodic checks (availability of an FTP or web server, etc), whereas passive checks are
better off at handling asynchronous events that occur at variable intervals (security alerts, etc.).

The image below gives a visual representation of how active and passive service checks can both be used
to monitor network resources (click on the image for a larger version).

The orange bubbles on the right side of the image are third-party applications that submit passive check
results to Nagios’ external command file. One of the applications resides on the same host as Nagios, so
it can write directly to the command file. The other application resides on a remote host and makes used
of the nsca client program and daemon to transfer the passive check results to Nagios.

The items on the left side of the image represent active service checks that Nagios is performing. I’ve
shown how the checks can be made for local resources (disk usage, etc.), "exposed" resources on remote
hosts (web server, FTP server, etc.), and "private" resources on remote hosts (remote host disk usage,
processor load, etc.). In this example, the private resources on the remote hosts are actually checked by
making use of the nrpe addon, which facilitates the execution of plugins on remote hosts.

98

How Do Passive Host Checks Work?

Passive host checks work in a similiar manner to passive service checks. Once an external application
has performed a host check, it submits the results of that host "check" to Nagios through the external
command file. The next time Nagios processes the contents of the external command file, it will process
the host check result that was submitted.

99

WARNING! Passive host checks have some limitations. Unlike active host checks, Nagios does not
attempt to determine whether or host is DOWN or UNREACHABLE with passive checks. Rather,
Nagios takes the passive check result to be the actual state the host is in and doesn’t try to determine the
actual state. In contrast, Nagios attempts to determine the proper status (DOWN or UNREACHABLE)
for hosts that are not UP when the host check is active (initiated by Nagios). This can cause problems if
you are submitting passive checks from a remote host or you have a distributed monitoring setup where
the parent/child host relationships are different. See the documentation on host reachability for more
information on how DOWN and UNREACHABLE states are determined for active host checks.

How Do External Apps Submit Host Check Results?

External applications can submit host check results to Nagios by writing a
PROCESS_HOST_CHECK_RESULT external command to the external command file.

The format of the command is as follows:

[<timestamp>] PROCESS_HOST_CHECK_RESULT;<host_name>;<host_status>;<plugin_output>

where...

timestamp is the time in time_t format (seconds since the UNIX epoch) that the host check was
perfomed (or submitted). Please note the single space after the right bracket.

host_name is the short name of the host (as defined in the host definition)

host_status is the status of the host (0=UP, 1=DOWN, 2=UNREACHABLE)

plugin_output is the text output of the host check

Note that in order to submit host checks to Nagios, a host must have already been defined in the object
configuration file! Nagios will ignore all check results for hosts that had not been configured before it
was last (re)started.

Submitting Passive Host Check Results From Remote Hosts

If an application that resides on the same host as Nagios is sending passive service check results, it can
simply write the results directly to the external command file as outlined above. However, applications
on remote hosts can’t do this so easily. In order to allow remote hosts to send passive host check results
to the host that runs Nagios, you can use the nsca addon. The addon consists of a daemon that runs on
the Nagios hosts and a client that is executed from remote hosts. The daemon will listen for connections
from remote clients, perform some basic validation on the results being submitted, and then write the
check results directly into the external command file (as described above). More information on the nsca
addon can be found here.

100

Volatile Services

Introduction

Nagios has the ability to distinguish between "normal" services and "volatile" services. The is_volatile
option in each service definition allows you to specify whether a specific service is volatile or not. For
most people, the majority of all monitored services will be non-volatile (i.e. "normal"). However, volatile
services can be very useful when used properly...

What Are They Useful For?

Volatile services are useful for monitoring...

things that automatically reset themselves to an "OK" state each time they are checked

events such as security alerts which require attention every time there is a problem (and not just the
first time)

What’s So Special About Volatile Services?

Volatile services differ from "normal" services in three important ways. Each time they are checked when
they are in a hard non-OK state, and the check returns a non-OK state (i.e. no state change has
occurred)...

the non-OK service state is logged

contacts are notified about the problem (if that’s what should be done)

the event handler for the service is run (if one has been defined)

These events normally only occur for services when they are in a non-OK state and a hard state change
has just occurred. In other words, they only happen the first time that a service goes into a non-OK state.
If future checks of the service result in the same non-OK state, no hard state change occurs and none of
the events mentioned take place again.

The Power Of Two

If you combine the features of volatile services and passive service checks, you can do some very useful
things. Examples of this include handling SNMP traps, security alerts, etc.

How about an example... Let’s say you’re running PortSentry to detect port scans on your machine and
automatically firewall potential intruders. If you want to let Nagios know about port scans, you could
do the following..

In Nagios:

Configure a service called Port Scans and associate it with the host that PortSentry is running on.

Set the max_check_attempts option in the service definition to 1. This will tell Nagios to immediate
force the service into a hard state when a non-OK state is reported.

Either set the active_checks_enabled option to 0 or set the check_time option in the service definition to
a timeperiod that contains no valid time ranges. Doing either of these will prevent Nagios from ever
actively checking the service. Even though the service check will get scheduled, it will never
actually be checked.

In PortSentry:

101

http://sourceforge.net/projects/sentrytools/

Edit your PortSentry configuration file (portsentry.conf), define a command for the
KILL_RUN_CMD directive as follows:
KILL_RUN_CMD="/usr/local/Nagios/libexec/eventhandlers/submit_check_result <host_name>
’Port Scans’ 2 ’Port scan from host $TARGET$ on port $PORT$. Host has been firewalled.’"
Make sure to replace <host_name> with the short name of the host that the service is associated with.

Create a shell script in the /usr/local/nagios/libexec/eventhandlers directory named submit_check_result. The
contents of the shell script should be something similiar to the following...

 #!/bin/sh

 # Write a command to the Nagios command file to cause
 # it to process a service check result

 echocmd="/bin/echo"

 CommandFile="/usr/local/nagios/var/rw/nagios.cmd"

 # get the current date/time in seconds since UNIX epoch
 datetime=‘date +%s‘

 # create the command line to add to the command file
 cmdline="[$datetime] PROCESS_SERVICE_CHECK_RESULT;$1;$2;$3;$4"

 # append the command to the end of the command file
 ‘$echocmd $cmdline >> $CommandFile‘

Note that if you are running PortSentry as root, you will have to make additions to the script to reset file
ownership and permissions so that Nagios and the CGIs can read/modify the command file.

So what happens when PortSentry detects a port scan on the machine?

It blocks the host (this is a function of the PortSentry software)

It executes the submit_check_result shell script to send the security alert info to Nagios

Nagios reads the command file, recognized the port scan entry as a passive service check

Nagios processes the results of the service by logging the CRITICAL state, sending notifications to
contacts (if configured to do so), and executes the event handler for the Port Scans service (if one is
defined)

102

Service and Host Result Freshness Checks

Introduction

Nagios supports a feature that does "freshness" checking on the results of host and service checks. This
feature is useful when you want to ensure that passive checks are being received as frequently as you
want. Although freshness checking can be used in a number of situations, it is primarily useful when
attempting to configure a distributed monitoring environment.

The purpose of "freshness" checking is to ensure that host and service checks are being provided
passively by external applications on a regular basis. If the results of a particular host or service check
(for which freshness checking has been enabled) is determined to be "stale", Nagios will force an active
check of that host or service.

Host vs. Service Freshness Checking

The documentation below discusses service freshness checking. Host freshness checking (which is not
documented seperately) works in a similiar way to service freshness checking - except, of course, that its
for hosts instead of services. If you need to configure host freshness checking, adjust the directions given
below appropriately.

Configuring Service Freshness Checking

Before you configure per-service freshness threshold, you must enable freshness checking using the
check_service_freshness and service_freshness_check_interval directives in the main config file. If you
were configuring host freshness checking, you would use the check_host_freshness and
host_freshness_check_interval directives.

So how do you go about enabling freshness checking for a particular service? You need to configure
service definitions as follows.

The check_freshness option in the service definition should be set to 1. This enables "freshness"
checking for the service.

The freshness_threshold option in the service definition should be set to a value (in seconds) which
reflects how "fresh" the results for the service should be.

The check_command option in the service definition should reflect valid command that should be
used to actively check the service when it is detected as being "stale".

The normal_check_interval option in the service definition needs to be greater than zero (0) if the
freshness_threshold option is setup to zero (0).

The check_period option in the service definitions needs to be set to a valid timeperiod. The times
allowed by the specified timeperiod determine when freshness checks can be performed for the
service.

How The Freshness Threshold Works

Nagios periodically checks the "freshness" of the results for all services that have freshness checking
enabled. The freshness_threshold option in each service definition is used to determine how "fresh" the
results for each service should be. For example, if you set the freshness_threshold option to 60 for one of
your services, Nagios will consider that service to be "stale" if its results are older than 60 seconds (1
minute). If you do not specify a value for the freshness_threshold option (or you set it to zero), Nagios will
automatically calculate a "freshness" threshold to use by looking at either the normal_check_interval or
retry_check_interval options (depending on what type of state the service is currently in).

103

What Happens When A Service Check Result Becomes "Stale"

If the check results of a service are found to be "stale" (as described above), Nagios will force an active
check of the service by executing the command specified by the check_command option in the service
definition. It is important to note that an active service check which is being forced because the service
was detected as being "stale" gets executed even if active service checks are disabled on a program-wide or
service-specific basis.

Working With Passive-Only Checks

As I mentioned earlier, freshness checking is of most use when you are dealing with services that get
their results from passive checks. More often than not (as in the case with distributed monitoring
setups), these services may not be getting all of their results from passive checks - no results are obtained
from active checks.

An example of a passive-only service might be one that reports the status of your nightly backup jobs.
Perhaps you have a external script that submit the results of the backup job to Nagios once the backup is
completed. In this case, all of the checks/results for the service are provided by an external application
using passive checks. In order to ensure that the status of the backup job gets reported every day, you
may want to enable freshness checking for the service. If the external script doesn’t submit the results of
the backup job, you can have Nagios fake a critical result by doing something like this...

Here’s what the definition for the service might look like (some required options are omitted)...

define service{
 host_name backup-server
 service_description ArcServe Backup Job
 active_checks_enabled 0 ; active checks are NOT enabled
 passive_checks_enabled 1 ; passive checks are enabled (this is how results are reported)
 check_freshness 1
 freshness_threshold 93600 ; 26 hour threshold, since backups may not always finish at the same time
 check_command no-backup-report ; this command is run only if the service results are "stale"
 ...other options...
 }

Notice that active checks are disabled for the service. This is because the results for the service are only
made by an external application using passive checks. Freshness checking is enabled and the freshness
threshold has been set to 26 hours. This is a bit longer than 24 hours because backup jobs sometimes run
late from day to day (depending on how much data there is to backup, how much network traffic is
present, etc.). The no-backup-report command is executed only if the results of the service are determined
to be "stale". The definition of the no-backup-report command might look like this...

define command{
 command_name no-backup-report
 command_line /usr/local/nagios/libexec/nobackupreport.sh
 }

The nobackupreport.sh script in your /usr/local/nagios/libexec directory might look something like this:

#!/bin/sh

/bin/echo "CRITICAL: Results of backup job were not reported!"

exit 2

If Nagios detects that the service results are stale, it will run the no-backup-report command as an active
service check (even though active checks are disabled for this specific service - remember that this is a
special case). This causes the /usr/local/nagios/libexec/nobackupreport.sh script to be executed, which returns
a critical state. The service go into to a critical state (if it isn’t already there) and someone will probably
get notified of the problem.

104

105

Distributed Monitoring

Introduction

Nagios can be configured to support distributed monitoring of network services and resources. I’ll try to
briefly explan how this can be accomplished...

Goals

The goal in the distributed monitoring environment that I will describe is to offload the overhead (CPU
usage, etc.) of performing service checks from a "central" server onto one or more "distributed" servers.
Most small to medium sized shops will not have a real need for setting up such an environment.
However, when you want to start monitoring hundreds or even thousands of hosts (and several times
that many services) using Nagios, this becomes quite important.

Reference Diagram

The diagram below should help give you a general idea of how distributed monitoring works with
Nagios. I’ll be referring to the items shown in the diagram as I explain things...

106

Central Server vs. Distributed Servers

When setting up a distributed monitoring environment with Nagios, there are differences in the way the
central and distributed servers are configured. I’ll show you how to configure both types of servers and
explain what effects the changes being made have on the overall monitoring. For starters, lets describe

107

the purpose of the different types of servers...

The function of a distributed server is to actively perform checks all the services you define for a "cluster"
of hosts. I use the term "cluster" loosely - it basically just mean an arbitrary group of hosts on your
network. Depending on your network layout, you may have several cluters at one physical location, or
each cluster may be separated by a WAN, its own firewall, etc. The important thing to remember to that
for each cluster of hosts (however you define that), there is one distributed server that runs Nagios and
monitors the services on the hosts in the cluster. A distributed server is usually a bare-bones installation
of Nagios. It doesn’t have to have the web interface installed, send out notifications, run event handler
scripts, or do anything other than execute service checks if you don’t want it to. More detailed
information on configuring a distributed server comes later...

The purpose of the central server is to simply listen for service check results from one or more distributed
servers. Even though services are occassionally actively checked from the central server, the active
checks are only performed in dire circumstances, so lets just say that the central server only accepts
passive check for now. Since the central server is obtaining passive service check results from one or
more distributed servers, it serves as the focal point for all monitoring logic (i.e. it sends out
notifications, runs event handler scripts, determines host states, has the web interface installed, etc).

Obtaining Service Check Information From Distributed Monitors

Okay, before we go jumping into configuration detail we need to know how to send the service check
results from the distributed servers to the central server. I’ve already discussed how to submit passive
check results to Nagios from same host that Nagios is running on (as described in the documentation on
passive checks), but I haven’t given any info on how to submit passive check results from other hosts.

In order to facilitate the submission of passive check results to a remote host, I’ve written the nsca
addon. The addon consists of two pieces. The first is a client program (send_nsca) which is run from a
remote host and is used to send the service check results to another server. The second piece is the nsca
daemon (nsca) which either runs as a standalone daemon or under inetd and listens for connections
from client programs. Upon receiving service check information from a client, the daemon will sumbit
the check information to Nagios (on the central server) by inserting a PROCESS_SVC_CHECK_RESULT
command into the external command file, along with the check results. The next time Nagios checks for
external commands, it will find the passive service check information that was sent from the distributed
server and process it. Easy, huh?

Distributed Server Configuration

So how exactly is Nagios configured on a distributed server? Basically, its just a bare-bones installation.
You don’t need to install the web interface or have notifications sent out from the server, as this will all
be handled by the central server.

Key configuration changes:

Only those services and hosts which are being monitored directly by the distributed server are
defined in the object configuration file.

The distributed server has its enable_notifications directive set to 0. This will prevent any
notifications from being sent out by the server.

The distributed server is configured to obsess over services.

The distributed server has an ocsp command defined (as described below).

In order to make everything come together and work properly, we want the distributed server to report
the results of all service checks to Nagios. We could use event handlers to report changes in the state of a
service, but that just doesn’t cut it. In order to force the distributed server to report all service check
results, you must enabled the obsess_over_services option in the main configuration file and provide a

108

ocsp_command to be run after every service check. We will use the ocsp command to send the results of
all service checks to the central server, making use of the send_nsca client and nsca daemon (as
described above) to handle the tranmission.

In order to accomplish this, you’ll need to define an ocsp command like this:

ocsp_command=submit_check_result

The command definition for the submit_check_result command looks something like this:

define command{
 command_name submit_check_result
 command_line /usr/local/nagios/libexec/eventhandlers/submit_check_result $HOSTNAME$ ’$SERVICEDESC$’ $SERVICESTATE$ ’$SERVICEOUTPUT$’
 }

The submit_check_result shell scripts looks something like this (replace central_server with the IP address
of the central server):

 #!/bin/sh

 # Arguments:
 # $1 = host_name (Short name of host that the service is
 # associated with)
 # $2 = svc_description (Description of the service)
 # $3 = state_string (A string representing the status of
 # the given service - "OK", "WARNING", "CRITICAL"
 # or "UNKNOWN")
 # $4 = plugin_output (A text string that should be used
 # as the plugin output for the service checks)
 #

 # Convert the state string to the corresponding return code
 return_code=-1

 case "$3" in
 OK)
 return_code=0
 ;;
 WARNING)
 return_code=1
 ;;
 CRITICAL)
 return_code=2
 ;;
 UNKNOWN)
 return_code=-1
 ;;
 esac

 # pipe the service check info into the send_nsca program, which
 # in turn transmits the data to the nsca daemon on the central
 # monitoring server

 /bin/printf "%s\t%s\t%s\t%s\n" "$1" "$2" "$return_code" "$4" | /usr/local/nagios/bin/send_nsca central_server -c /usr/local/nagios/etc/send_nsca.cfg

The script above assumes that you have the send_nsca program and it configuration file (send_nsca.cfg)
located in the /usr/local/nagios/bin/ and /usr/local/nagios/etc/ directories, respectively.

That’s it! We’ve sucessfully configured a remote host running Nagios to act as a distributed monitoring
server. Let’s go over exactly what happens with the distributed server and how it sends service check
results to Nagios (the steps outlined below correspond to the numbers in the reference diagram above):

1. After the distributed server finishes executing a service check, it executes the command you defined
by the ocsp_command variable. In our example, this is the
/usr/local/nagios/libexec/eventhandlers/submit_check_result script. Note that the definition for the
submit_check_result command passed four pieces of information to the script: the name of the host
the service is associated with, the service description, the return code from the service check, and
the plugin output from the service check.

2. The submit_check_result script pipes the service check information (host name, description, return
code, and output) to the send_nsca client program.

3. The send_nsca program transmits the service check information to the nsca daemon on the central
monitoring server.

4. The nsca daemon on the central server takes the service check information and writes it to the
external command file for later pickup by Nagios.

5. The Nagios process on the central server reads the external command file and processes the passive

109

service check information that originated from the distributed monitoring server.

Central Server Configuration

We’ve looked at hot distributed monitoring servers should be configured, so let’s turn to the central
server. For all intensive purposes, the central is configured as you would normally configure a
standalone server. It is setup as follows:

The central server has the web interface installed (optional, but recommended)

The central server has its enable_notifications directive set to 1. This will enable notifications.
(optional, but recommended)

The central server has active service checks disabled (optional, but recommended - see notes below)

The central server has external command checks enabled (required)

The central server has passive service checks enabled (required)

There are three other very important things that you need to keep in mind when configuring the central
server:

The central server must have service definitions for all services that are being monitored by all the
distributed servers. Nagios will ignore passive check results if they do not correspond to a service
that has been defined.

If you’re only using the central server to process services whose results are going to be provided by
distributed hosts, you can simply disable all active service checks on a program-wide basis by
setting the execute_service_checks directive to 0. If you’re using the central server to actively
monitor a few services on its own (without the aid of distributed servers), the enable_active_checks
option of the defintions for service being monitored by distributed servers should be set to 0. This
will prevent Nagios from actively checking those services.

It is important that you either disable all service checks on a program-wide basis or disable the
enable_active_checks option in the definitions for each service that is monitored by a distributed server.
This will ensure that active service checks are never executed under normal circumstances. The services
will keep getting rescheduled at their normal check intervals (3 minutes, 5 minutes, etc...), but the won’t
actually be executed. This rescheduling loop will just continue all the while Nagios is running. I’ll
explain why this is done in a bit...

That’s it! Easy, huh?

Problems With Passive Checks

For all intensive purposes we can say that the central server is relying solely on passive checks for
monitoring. The main problem with relying completely on passive checks for monitoring is the fact that
Nagios must rely on something else to provide the monitoring data. What if the remote host that is
sending in passive check results goes down or becomes unreachable? If Nagios isn’t actively checking
the services on the host, how will it know that there is a problem?

Fortunately, there is a way we can handle these types of problems...

Freshness Checking

Nagios supports a feature that does "freshness" checking on the results of service checks. More
information freshness checking can be found here. This features gives some protection against situations
where remote hosts may stop sending passive service checks into the central monitoring server. The
purpose of "freshness" checking is to ensure that service checks are either being provided passively by
distributed servers on a regular basis or performed actively by the central server if the need arises. If the
service check results provided by the distributed servers get "stale", Nagios can be configured to force

110

active checks of the service from the central monitoring host.

So how do you do this? On the central monitoring server you need to configure services that are being
monitoring by distributed servers as follows...

The check_freshness option in the service definitions should be set to 1. This enables "freshness"
checking for the services.

The freshness_threshold option in the service definitions should be set to a value (in seconds) which
reflects how "fresh" the results for the services (provided by the distributed servers) should be.

The check_command option in the service definitions should reflect valid commands that can be used
to actively check the service from the central monitoring server.

Nagios periodically checks the "freshness" of the results for all services that have freshness checking
enabled. The freshness_threshold option in each service definition is used to determine how "fresh" the
results for each service should be. For example, if you set this value to 300 for one of your services,
Nagios will consider the service results to be "stale" if they’re older than 5 minutes (300 seconds). If you
do not specify a value for the freshness_threshold option, Nagios will automatically calculate a "freshness"
threshold by looking at either the normal_check_interval or retry_check_interval options (depending on
what type of state the service is in). If the service results are found to be "stale", Nagios will run the
service check command specified by the check_command option in the service definition, thereby actively
checking the service.

Remember that you have to specify a check_command option in the service definitions that can be used to
actively check the status of the service from the central monitoring server. Under normal circumstances,
this check command is never executed (because active checks were disabled on a program-wide basis or
for the specific services). When freshness checking is enabled, Nagios will run this command to actively
check the status of the service even if active checks are disabled on a program-wide or service-specific basis.

If you are unable to define commands to actively check a service from the central monitoring host (or if
turns out to be a major pain), you could simply define all your services with the check_command option
set to run a dummy script that returns a critical status. Here’s an example... Let’s assume you define a
command called ’service-is-stale’ and use that command name in the check_command option of your
services. Here’s what the definition would look like...

define command{
 command_name service-is-stale
 command_line /usr/local/nagios/libexec/staleservice.sh
 }

The staleservice.sh script in your /usr/local/nagios/libexec directory might look something like this:

#!/bin/sh

/bin/echo "CRITICAL: Service results are stale!"

exit 2

When Nagios detects that the service results are stale and runs the service-is-stale command, the
/usr/local/nagios/libexec/staleservice.sh script is executed and the service will go into a critical state. This
would likely cause notifications to be sent out, so you’ll know that there’s a problem.

Performing Host Checks

At this point you know how to obtain service check results passivly from distributed servers. This means
that the central server is not actively checking services on its own. But what about host checks? You still
need to do them, so how?

111

Since host checks usually compromise a small part of monitoring activity (they aren’t done unless
absolutely necessary), I’d recommend that you perform host checks actively from the central server. That
means that you define host checks on the central server the same way that you do on the distributed
servers (and the same way you would in a normal, non-distributed setup).

Passive host checks are available (read here), so you could use them in your distributed monitoring
setup, but they suffer from a few problems. The biggest problem is that Nagios does not translate
passive host check problem states (DOWN and UNREACHABLE) when they are processed. This means
that if your monitoring servers have a different parent/child host structure (and they will, if you
monitoring servers are in different locations), the central monitoring server will have an inaccurate view
of host states.

If you do want to send passive host checks to a central server in your distributed monitoring setup,
make sure:

The central server has passive host checks enabled (required)

The distributed server is configured to obsess over hosts.

The distributed server has an ochp command defined.

The ochp command, which is used for processing host check results, works in a similiar manner to the
ocsp command, which is used for processing service check results (see documentation above). In order
to make sure passive host check results are up to date, you’ll want to enable freshness checking for hosts
(similiar to what is described above for services).

112

Redundant and Failover Network Monitoring

Introduction

This section describes a few scenarios for implementing redundant monitoring hosts an various types of
network layouts. With redundant hosts, you can maintain the ability to monitor your network when the
primary host that runs Nagios fails or when portions of your network become unreachable.

Note: If you are just learning how to use Nagios, I would suggest not trying to implement redudancy
until you have becoming familiar with the prerequisites I’ve laid out. Redundancy is a relatively
complicated issue to understand, and even more difficult to implement properly.

Index

Prerequisites
Sample scripts
Scenario 1 - Redundant monitoring
Scenario 2 - Failover monitoring

Prerequisites

Before you can even think about implementing redundancy with Nagios, you need to be familiar with
the following...

Implementing event handlers for hosts and services

Issuing external commands to Nagios via shell scripts

Executing plugins on remote hosts using either the nrpe addon or some other method

Checking the status of the Nagios process with the check_nagios plugin

Sample Scripts

All of the sample scripts that I use in this documentation can be found in the eventhandlers/ subdirectory
of the Nagios distribution. You’ll probably need to modify them to work on your system...

Scenario 1 - Redundant Monitoring

Introduction

This is an easy (and naive) method of implementing redundant monitoring hosts on your network and it
will only protect against a limited number of failures. More complex setups are necessary in order to
provide smarter redundancy, better redundancy across different network segments, etc.

Goals

The goal of this type of redundancy implementation is simple. Both the "master" and "slave" hosts
monitor the same hosts and service on the network. Under normal circumstances only the "master" host
will be sending out notifications to contacts about problems. We want the "slave" host running Nagios to
take over the job of notifying contacts about problems if:

1. The "master" host that runs Nagios is down or..

2. The Nagios process on the "master" host stops running for some reason

113

Network Layout Diagram

The diagram below shows a very simple network setup. For this scenario I will be assuming that hosts A
and E are both running Nagios and are monitoring all the hosts shown. Host A will be considered the
"master" host and host E will be considered the "slave" host.

Initial Program Settings

The slave host (host E) has its initial enable_notifications directive disabled, thereby preventing it from
sending out any host or service notifications. You also want to make sure that the slave host has its
check_external_commands directive enabled. That was easy enough...

Initial Configuration

Next we need to consider the differences between the object configuration file(s) on the master and slave
hosts...

I will assume that you have the master host (host A) setup to monitor services on all hosts shown in the
diagram above. The slave host (host E) should be setup to monitor the same services and hosts, with the
following additions in the configuration file...

The host definition for host A (in the host E configuration file) should have a host event handler
defined. Lets say the name of the host event handler is handle-master-host-event.

The configuration file on host E should have a service defined to check the status of the Nagios
process on host A. Lets assume that you define this service check to run the check_nagios plugin on
host A (using NRPE, SSH, etc.).

The service definition for the Nagios process check on host A should have an event handler defined.
Lets say the name of the service event handler is handle-master-proc-event.

It is important to note that host A (the master host) has no knowledge of host E (the slave host). In this
scenario it simply doesn’t need to. Of course you may be monitoring services on host E from host A, but
that has nothing to do with the implementation of redundancy...

Event Handler Command Definitions

We need to stop for a minute and describe what the command definitions for the event handlers on the
slave host look like. Here is an example...

114

define command{
 command_name handle-master-host-event
 command_line /usr/local/nagios/libexec/eventhandlers/handle-master-host-event $HOSTSTATE$ $HOSTSTATETYPE$
 }

define command{
 command_name handle-master-proc-event
 command_line /usr/local/nagios/libexec/eventhandlers/handle-master-proc-event $SERVICESTATE$ $SERVICESTATETYPE$
 }

This assumes that you have placed the event handler scripts in the /usr/local/nagios/libexec/eventhandlers
directory. You may place them anywhere you wish, but you’ll need to modify the examples I’ve given
here.

Event Handler Scripts

Okay, now lets take a look at what the event handler scripts look like...

Host Event Handler (handle-master-host-event):

#!/bin/sh

Only take action on hard host states...
case "$2" in
HARD)
 case "$1" in
 DOWN)
 # The master host has gone down!
 # We should now become the master host and take
 # over the responsibilities of monitoring the
 # network, so enable notifications...
 /usr/local/nagios/libexec/eventhandlers/enable_notifications
 ;;
 UP)
 # The master host has recovered!
 # We should go back to being the slave host and
 # let the master host do the monitoring, so
 # disable notifications...
 /usr/local/nagios/libexec/eventhandlers/disable_notifications
 ;;
 esac
 ;;
esac
exit 0

Service Event Handler (handle-master-proc-event):

#!/bin/sh

Only take action on hard service states...
case "$2" in
HARD)
 case "$1" in
 CRITICAL)
 # The master Nagios process is not running!
 # We should now become the master host and
 # take over the responsibility of monitoring
 # the network, so enable notifications...
 /usr/local/nagios/libexec/eventhandlers/enable_notifications
 ;;
 WARNING)
 UNKNOWN)
 # The master Nagios process may or may not
 # be running.. We won’t do anything here, but
 # to be on the safe side you may decide you
 # want the slave host to become the master in

115

 # these situations...
 ;;
 OK)
 # The master Nagios process running again!
 # We should go back to being the slave host,
 # so disable notifications...
 /usr/local/nagios/libexec/eventhandlers/disable_notifications
 ;;
 esac
 ;;
esac
exit 0

What This Does For Us

The slave host (host E) initially has notifications disabled, so it won’t send out any host or service
notifications while the Nagios process on the master host (host A) is still running.

The Nagios process on the slave host (host E) becomes the master host when...

The master host (host A) goes down and the handle-master-host-event host event handler is executed.

The Nagios process on the master host (host A) stops running and the handle-master-proc-event
service event handler is executed.

When the Nagios process on the slave host (host E) has notifications enabled, it will be able to send out
notifications about any service or host problems or recoveries. At this point host E has effectively taken
over the responsibility of notifying contacts of host and service problems!

The Nagios process on host E returns to being the slave host when...

Host A recovers and the handle-master-host-event host event handler is executed.

The Nagios process on host A recovers and the handle-master-proc-event service event handler is
executed.

When the Nagios process on host E has notifications disabled, it will not send out notifications about any
service or host problems or recoveries. At this point host E has handed over the responsibilities of
notifying contacts of problems to the Nagios process on host A. Everything is now as it was when we
first started!

Time Lags

Redundancy in Nagios is by no means perfect. One of the more obvious problems is the lag time
between the master host failing and the slave host taking over. This is affected by the following...

The time between a failure of the master host and the first time the slave host detects a problem

The time needed to verify that the master host really does have a problem (using service or host
check retries on the slave host)

The time between the execution of the event handler and the next time that Nagios checks for
external commands

You can minimize this lag by...

Ensuring that the Nagios process on host E (re)checks one or more services at a high frequency. This
is done by using the check_interval and retry_interval arguments in each service definition.

Ensuring that the number of host rechecks for host A (on host E) allow for fast detection of host
problems. This is done by using the max_check_attempts argument in the host definition.

Increase the frequency of external command checks on host E. This is done by modifying the

116

command_check_interval option in the main configuration file.

When Nagios recovers on the host A, there is also some lag time before host E returns to being a slave
host. This is affected by the following...

The time between a recovery of host A and the time the Nagios process on host E detects the
recovery

The time between the execution of the event handler on host B and the next time the Nagios process
on host E checks for external commands

The exact lag times between the transfer of monitoring responsibilities will vary depending on how
many services you have defined, the interval at which services are checked, and a lot of pure chance. At
any rate, its definitely better than nothing.

Special Cases

Here is one thing you should be aware of... If host A goes down, host E will have notifications enabled
and take over the responsibilities of notifying contacts of problems. When host A recovers, host E will
have notifications disabled. If - when host A recovers - the Nagios process on host A does not start up
properly, there will be a period of time when neither host is notifying contacts of problems! Fortunately,
the service check logic in Nagios accounts for this. The next time the Nagios process on host E checks the
status of the Nagios process on host A, it will find that it is not running. Host E will then have
notifications enabled again and take over all responsibilities of notifying contacts of problems.

The exact amount of time that neither host is monitoring the network is hard to determine. Obviously,
this period can be minimized by increasing the frequency of service checks (on host E) of the Nagios
process on host A. The rest is up to pure chance, but the total "blackout" time shouldn’t be too bad.

Scenario 2 - Failover Monitoring

Introduction

Failover monitoring is similiar to, but slightly different than redundant monitoring (as discussed above
in scenario 1).

Goals

The basic goal of failover monitoring is to have the Nagios process on the slave host sit idle while the
Nagios process on the master host is running. If the process on the master host stops running (or if the
host goes down), the Nagios process on the slave host starts monitoring everything.

While the method described in scenario 1 will allow you to continue receive notifications if the master
monitoring hosts goes down, it does have some pitfalls. The biggest problem is that the slave host is
monitoring the same hosts and servers as the master at the same time as the master! This can cause
problems with excessive traffic and load on the machines being monitored if you have a lot of services
defined. Here’s how you can get around that problem...

Initial Program Settings

Disable active service checks and notifications on the slave host using the execute_service_checks and
enable_notifications directives. This will prevent the slave host from monitoring hosts and services and
sending out notifications while the Nagios process on the master host is still up and running. Make sure
you also have the check_external_commands directive enabled on the slave host.

117

Master Process Check

Set up a cron job on the slave host that periodically (say every minute) runs a script that checks the staus
of the Nagios process on the master host (using the check_nrpe plugin on the slave host and the nrpe
daemon and check_nagios plugin on the master host). The script should check the return code of the
check_nrpe plugin . If it returns a non-OK state, the script should send the appropriate commands to the
external command file to enable both notifications and active service checks. If the plugin returns an OK
state, the script should send commands to the external command file to disable both notifications and
active checks.

By doing this you end up with only one process monitoring hosts and services at a time, which is much
more efficient that monitoring everything twice.

Also of note, you don’t need to define host and service handlers as mentioned in scenario 1 because
things are handled differently.

Additional Issues

At this point, you have implemented a very basic failover monitoring setup. However, there is one more
thing you should consider doing to make things work smoother.

The big problem with the way things have been setup thus far is the fact that the slave host doesn’t have
the current status of any services or hosts at the time it takes over the job of monitoring. One way to
solve this problem is to enable the ocsp command on the master host and have it send all service check
results to the slave host using the nsca addon. The slave host will then have up-to-date status
information for all services at the time it takes over the job of monitoring things. Since active service
checks are not enabled on the slave host, it will not actively run any service checks. However, it will
execute host checks if necessary. This means that both the master and slave hosts will be executing host
checks as needed, which is not really a big deal since the majority of monitoring deals with service
checks.

That’s pretty much it as far as setup goes.

118

Detection and Handling of State Flapping

Introduction

Nagios supports optional detection of hosts and services that are "flapping". Flapping occurs when a
service or host changes state too frequently, resulting in a storm of problem and recovery notifications.
Flapping can be indicative of configuration problems (i.e. thresholds set too low) or real network
problems.

Before I go any futher, let me say that flapping detection has been a little difficult to implement. How
exactly does one determine what "too frequently" means in regards to state changes for a particular host
or service? When I first started looking into flap detection I tried to find some information on how
flapping could/should be detected. After I couldn’t find any, I decided to settle with what seemed to be
a reasonable solution. The methods by which Nagios detects service and host state flapping are
described below...

Service Flap Detection

Whenever a service check is performed that results in a hard state or a soft recovery state, Nagios checks
to see if the services has started or stopped flapping. It does this by storing the results of the last 21
checks of the service in an array. Older check results in the array are overwritten by newer check results.

The contents of the historical state array are examined (in order from oldest result to newest result) to
determine the total percentage of change in state that has occurred during the last 21 service checks. A
state change occurs when an archived state is different from the archived state that immediately
precedes it in the array. Since we keep the results of the last 21 service checks in the array, there is a
possibility of having 20 state changes.

Image 1 below shows a chronological array of service states. OK states are shown in green, WARNING
states in yellow, CRITICAL states in red, and UNKNOWN states in orange. Blue arrows have been
placed over periods of time where state changes occur.

Image 1.

Services that rarely change between states will have a lower total percentage of change than those that
do change between states a lot. Since flapping is associated with frequent state changes, we can use the
calculated amount of change in state over a period of time (in this case, the last 21 service checks) to
determine whether or not a service is flapping. That’s not quite good enough though...

119

It stands to reason that newer state changes should carry more weight than older state changes, so we
really need to recalculate the total percent change in state for the service on some sort of curve... To make
things simple, I’ve decided to make the relationship between time and weight linear for calculation of
percent state change. The flap detection routines are currently designed to make the newest possible
state change carry 50% more weight than the oldest possible state change. Image 2 shows how more
recent state changes are given more weight than older state changes when calculating the overall or total
percent state change for a particular service. If you really want to see exactly how the weighted
calculation is done, look at the code in base/flapping.c...

Image 2.

Let’s look at a quick example of how flap detection is done. Image 1 above depicts the array of historical
service check results for a particular service. The oldest result is on the left and the newest result is on
the right. We see that in the example below there were a total of 7 state changes (at t3 , t4 , t5 , t9 , t12 , t16 ,

and t19). Without any weighting of the state changes over time, this would give us a total state change of

35% (7 state changes out of a possible 20 state changes). When the individual state changes are weighted
relative to the time at which they occurred, the resulting total percent state change for the service is less
than 35%. This makes sense since most of the state changes occurred earlier rather than later. Let’s just
say that the weighted percent of state change turned out to be 31%...

So what significance does the 31% state change have? Well, if the service was previously not flapping
and 31% is equal to or greater than the value specified by the high_service_flap_threshold option in the
service definition, Nagios considers the service to have just started flapping. If the service was previously
flapping and 31% is less than or equal to the value specified by the low_service_flap_threshold value in
the service definition, Nagios considers the service to have just stopped flapping. If either of those two
conditions are not met, Nagios does nothing else with the service, since it is either not currently flapping
or it is still flapping...

Host Flap Detection

Host flap detection works in a similiar manner to service flap detection, with one important difference:
Nagios will attempt to check to see if a host is flapping whenever the status of the host is checked and
whenever a service associated with that host is checked. Why is this done? Well, with services we know
that the minimum amount of time between consecutive flap detection routines is going to be equal to the
service check interval. With hosts, we don’t have a check interval, since hosts are not monitored on a
regular basis - they are only checked as necessary. A host will be checked for flapping if its state has
changed since the last time the flap detection was performed for that host or if its state has not changed
but at least x amount of time has passed since the flap detection was performed. The x amount of time is
equal to the average check interval of all services associated with the host. That’s the best method I could
come up with for determining how often flap detection could be performed on a host...

120

Just as with services, Nagios stores the results of the last 21 of these host checks in an array for the flap
detection logic. State changes are weighted based on the time at which they occurred, and the total
percent change in state is calculated in the same manner that it is in the service flapping logic.

If a host was previously not flapping and its total computed state change percentage is equal to or greater
than the value specified by the high_host_flap_threshold option, Nagios considers the host to have just
started flapping. If the host was previously flapping and its total computed state change percentage is
less than or equal to the value specified by the low_host_flap_threshold value, Nagios considers the host
to have just stopped flapping. If either of those two conditions are not met, Nagios does nothing else
with the host, since it is either not currently flapping or it is still flapping...

Host- and Service-Specific Flap Detection Thresholds

If you’re using the template-based object definition files, you can specify host- and service-specific flap
detection thresholds by adding low_flap_threshold and high_flap_threshold directives to individual
host and service definitions. If these directives are not present in the host or service definitions, the
global host and service flap detection thresholds will be used.

On a similiar note, you can also enable/disable flap detection for specific hosts and services by using the
flap_detection_enabled directive in each object definition. Note that flap detection must be enabled on a
program-wide basis (using the enable_flap_detection directive in the main config file) in order for any
host or service to have flap detection enabled.

Flap Handling

When a service or host is first detected as flapping, Nagios will do three things:

1. Log a message indicating that the service or host is flapping

2. Add a non-persistent comment to the host or service indicating that it is flapping

3. Suppress notifications for the service or host (this is one of the filters in the notification logic)

When a service or host stops flapping, Nagios will do the following:

1. Log a message indicating that the service or host has stopped flapping

2. Delete the comment that was originally added to the service or host when it started flapping

3. Remove the block on notifications for the service or host (notifications will still be bound to the
normal notification logic)

121

Service Check Parallelization

Introduction

One of the features of Nagios is its ability to execute service checks in parallel. This documentation will
attempt to explain in detail what that means and how it affects services that you have defined.

How The Parallelization Works

Before I can explain how the service check parallelization works, you first have to understand a bit about
how Nagios schedules events. All internal events in Nagios (i.e. log file rotations, external command
checks, service checks, etc.) are placed in an event queue. Each item in the event queue has a time at
which it is scheduled to be executed. Nagios does its best to ensure that all events get executed when
they should, although events may fall behind schedule if Nagios is busy doing other things.

Service checks are one type of event that get scheduled in Nagios’ event queue. When it comes time for a
service check to be executed, Nagios will kick off another process (using a call to fork()) to go out and
run the service check (i.e. a plugin of some sort). Nagios does not, however, wait for the service check to
finish! Instead, Nagios will immediately go back to servicing other events that reside in the event
queue...

So what happens when the service check finishes executing? Well, the process that was started by
Nagios to run the service check sends a message back to Nagios containing the results of the service
check. It is then up to Nagios to check for and process the results of that service check when it gets a
chance.

In order for Nagios to actually do any monitoring, it must process the results of service checks that have
finished executing. This is done via a service check "reaper" process. Service "reapers" are another type of
event that get scheduled in Nagios’ event queue. The frequency of these "reaper" events is determined
by the service_reaper_frequency option in the main configuration file. When a "reaper" event is
executed, it will check for any messages that contain the result of service checks that have finished
executing. These service check results are then handled by the core service monitoring logic. From there
Nagios determines whether or not hosts should be checked, notifications should be sent out, etc. When
the service check results have been processed, Nagios will reschedule the next check of the service and
place it in the event queue for later execution. That completes the service check/monitoring cycle!

For those of you who really want to know, but haven’t looked at the code, Nagios uses message queues
to handle communication between Nagios and the process that actually runs the service check...

Potential Gotchas...

You should realize that there are potential drawbacks to having service checks parallelized. Since more
than one service check may be running at the same time, they have may interfere with one another.
You’ll have to evaluate what types of service checks you’re running and take appropriate steps to guard
against any unfriendly outcomes. This is particularly important if you have more than one service check
that accesses any hardware (like a modem). Also, if two or more service checks connect to daemon on a
remote host to check some information, make sure that daemon can handle multiple simultaneous
connections.

Fortunately, there are some things you can do to protect against problems with having some types of
service checks "collide"...

122

1. The easiest thing you can do to prevent service check collisions to to use the
service_interleave_factor variable. Interleaving services will help to reduce the load imposed upon
remote hosts by service checks. Set the variable to use "smart" interleave factor calculation and then
adjust it manually if you find it necessary to do so.

2. The second thing you can do is to set the max_check_attempts argument in each service definition to
something greater than one. If the service check does happen to collide with another running check,
Nagios will retry the service check max_check_attempts-1 times before notifying anyone of a problem.

3. You could try is to implement some kind of "back-off and retry" logic in the actual service check
code, although you may find it difficult or too time-consuming

4. If all else fails you can effectively prevent service checks from being parallelized by setting the
max_concurrent_checks option to 1. This will allow only one service to be checked at a time, so it
isn’t a spectacular solution. If there is enough demand, I will add an option to the service definitions
which will allow you to specify on a per-service basis whether or not a service check can be
parallelized. If there isn’t enough demand, I won’t...

One other thing to note is the effect that parallelization of service checks can have on system resources
on the machine that runs Nagios. Running a lot of service checks in parallel can be taxing on the CPU
and memory. The inter_check_delay_method will attempt to minimize the load imposed on your
machine by spreading the checks out evenly over time (if you use the "smart" method), but it isn’t a
surefire solution. In order to have some control over how many service checks can be run at any given
time, use the max_concurrent_checks variable. You’ll have to tweak this value based on the total number
of services you check, the system resources you have available (CPU speed, memory, etc.), and other
processes which are running on your machine. For more information on how to tweak the
max_concurrent_checks variable for your setup, read the documentation on check scheduling.

What Isn’t Parallelized

It is important to remember that only the execution of service checks has been parallelized. There is good
reason for this - other things cannot be parallelized in a very safe or sane manner. In particular, event
handlers, contact notifications, processing of service checks, and host checks are not parallelized. Here’s
why...

Event handlers are not parallelized because of what they are designed to do. Much of the power of event
handlers comes from the ability to do proactive problem resultion. An example of this is restarting the
web server when the HTTP service on the local machine is detected as being down. In order to prevent
more than one event handler from trying to "fix" problems in parallel (without any knowledge of what
each other is doing), I have decided to not parallelize them.

Contact notifications are not parallelized because of potential notification methods you may be using. If,
for example, a contact notification uses a modem to dial out and send a message to your pager, it
requires exclusive access to the modem while the notification is in progress. If two or more such
notifications were being executed in parallel, all but one would fail because the others could not get
access to the modem. There are ways to get around this, like providing some kind of "back-off and retry"
method in the notification script, but I’ve decided not to rely on users having implemented this type of
feature in their scripts. One quick note - if you have service checks which use a modem, make sure that
any notification scripts that dial out have some method of retrying access to the modem. This is
necessary because a service check may be running at the same time a notification is!

Processing of service check results has not been parallelized. This has been done to prevent situations where
multiple notifications about host problems or recoveries may be sent out if a host goes down, becomes
unreachable, or recovers.

123

Notification Escalations

Introduction

Nagios supports optional escalation of contact notifications for hosts and services. I’ll explain quickly
how they work, although they should be fairly self-explanatory...

Service Notification Escalations

Escalation of service notifications is accomplished by defining service escalations in your object
configuration file. Service escalation definitions are used to escalate notifications for a particular service.

Host Notification Escalations

Escalation of host notifications is accomplished by defining host escalations in your object configuration
file. The examples I provide below all use service escalation definitions, but host escalations work the
same way (except for the fact that they are used for host notifications and not service notifications).

When Are Notifications Escalated?

Notifications are escalated if and only if one or more escalation definitions matches the current
notification that is being sent out. If a host or service notification does not have any valid escalation
definitions that applies to it, the contact group(s) specified in either the host group or service definition
will be used for the notification. Look at the example below:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 90
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 10
 notification_interval 60
 contact_groups nt-admins,managers,everyone
 }

Notice that there are "holes" in the notification escalation definitions. In particular, notifications 1 and 2
are not handled by the escalations, nor are any notifications beyond 10. For the first and second
notification, as well as all notifications beyond the tenth one, the default contact groups specified in the
service definition are used. For all the examples I’ll be using, I’ll be assuming that the default contact
groups for the service definition is called nt-admins.

Contact Groups

When defining notification escalations, it is important to keep in mind that any contact groups that were
members of "lower" escalations (i.e. those with lower notification number ranges) should also be
included in "higher" escalation definitions. This should be done to ensure that anyone who gets notified
of a problem continues to get notified as the problem is escalated. Example:

124

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 90
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
 }

The first (or "lowest") escalation level includes both the nt-admins and managers contact groups. The last
(or "highest") escalation level includes the nt-admins, managers, and everyone contact groups. Notice that
the nt-admins contact group is included in both escalation definitions. This is done so that they continue
to get paged if there are still problems after the first two service notifications are sent out. The managers
contact group first appears in the "lower" escalation definition - they are first notified when the third
problem notification gets sent out. We want the managers group to continue to be notified if the problem
continues past five notifications, so they are also included in the "higher" escalation definition.

Overlapping Escalation Ranges

Notification escalation definitions can have notification ranges that overlap. Take the following example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 20
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 30
 contact_groups on-call-support
 }

In the example above:

The nt-admins and managers contact groups get notified on the third notification

All three contact groups get notified on the fourth and fifth notifications

Only the on-call-support contact group gets notified on the sixth (or higher) notification

Recovery Notifications

Recovery notifications are slightly different than problem notifications when it comes to escalations.
Take the following example:

125

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 20
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 30
 contact_groups on-call-support
 }

If, after three problem notifications, a recovery notification is sent out for the service, who gets notified?
The recovery is actually the fourth notification that gets sent out. However, the escalation code is smart
enough to realize that only those people who were notified about the problem on the third notification
should be notified about the recovery. In this case, the nt-admins and managers contact groups would be
notified of the recovery.

Notification Intervals

You can change the frequency at which escalated notifications are sent out for a particular host or service
by using the notification_interval option of the hostgroup or service escalation definition. Example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
 }

In this example we see that the default notification interval for the services is 240 minutes (this is the
value in the service definition). When the service notification is escalated on the 3rd, 4th, and 5th
notifications, an interval of 45 minutes will be used between notifications. On the 6th and subsequent
notifications, the notification interval will be 60 minutes, as specified in the second escalation definition.

Since it is possible to have overlapping escalation definitions for a particular hostgroup or service, and
the fact that a host can be a member of multiple hostgroups, Nagios has to make a decision on what to
do as far as the notification interval is concerned when escalation definitions overlap. In any case where
there are multiple valid escalation definitions for a particular notification, Nagios will choose the
smallest notification interval. Take the following example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3

126

 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
 }

We see that the two escalation definitions overlap on the 4th and 5th notifications. For these
notifications, Nagios will use a notification interval of 45 minutes, since it is the smallest interval present
in any valid escalation definitions for those notifications.

One last note about notification intervals deals with intervals of 0. An interval of 0 means that Nagios
should only sent a notification out for the first valid notification during that escalation definition. All
subsequent notifications for the hostgroup or service will be suppressed. Take this example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 6
 notification_interval 0
 contact_groups nt-admins,managers,everyone
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 7
 last_notification 0
 notification_interval 30
 contact_groups nt-admins,managers
 }

In the example above, the maximum number of problem notifications that could be sent out about the
service would be four. This is because the notification interval of 0 in the second escalation definition
indicates that only one notification should be sent out (starting with and including the 4th notification)
and all subsequent notifications should be repressed. Because of this, the third service escalation
definition has no effect whatsoever, as there will never be more than four notifications.

Time Period Restrictions

Under normal circumstances, escalations can be used at any time that a notification could normally be
sent out for the service. This "notification time window" is determined by the notification_period directive
in the service definition.

127

You can optionally restrict escalations so that they are only used during specific time periods by using
the escalation_period directive in the service escalation definition. If you use the escalation_period directive
to specify a timeperiod during which the escalation can be used, the escalation will only be used during
that time. If you do not specify any escalation_period directive, the escalation can be used at any time
within the "notification time window" for the service.

Note that the notification is still subject to the normal time restrictions imposed by the notification_period
directive in the service escalation, so the timeperiod you specify in the escalation should be a subset of
that larger "notification time window".

State Restrictions

If you would like to restrict the escalation definition so that it is only used when the service is in a
particular state, you can use the escalation_options directive in the service escalation definition. If you do
not use the escalation_options directive, the escalation can be used when the service is in any state.

128

Monitoring Service and Host Clusters

Introduction

Several people have asked how to go about monitoring clusters of hosts or services, so I decided to write
up a little documentation on how to do this. Its fairly straightforward, so hopefully you find things easy
to understand...

First off, we need to define what we mean by a "cluster". The simplest way to understand this is with an
example. Let’s say that your organization has five hosts which provide redundant DNS services to your
organization. If one of them fails, its not a major catastrophe because the remaining servers will continue
to provide name resolution services. If you’re concerned with monitoring the availability of DNS service
to your organization, you will want to monitor five DNS servers. This is what I consider to be a service
cluster. The service cluster consists of five separate DNS services that you are monitoring. Although you
do want to monitor each individual service, your main concern is with the overall status of the DNS
service cluster, rather than the availability of any one particular service.

If your organization has a group of hosts that provide a high-availability (clustering) solution, I would
consider those to be a host cluster. If one particular host fails, another will step in to take over all the
duties of the failed server. As a side note, check out the High-Availability Linux Project for information
on providing host and service redundancy with Linux.

Plan of Attack

There are several ways you could potentially monitor service or host clusters. I’ll describe the method
that I believe to be the easiest. Monitoring service or host clusters involves two things:

Monitoring individual cluster elements

Monitoring the cluster as a collective entity

Monitoring individual host or service cluster elements is easier than you think. In fact, you’re probably
already doing it. For service clusters, just make sure that you are monitoring each service element of the
cluster. If you’ve got a cluster of five DNS servers, make sure you have five separate service definitions
(probably using the check_dns plugin). For host clusters, make sure you have configured appropriate
host definitions for each member of the cluster (you’ll also have to define at least one service to be
monitored for each of the hosts). Important: You’re going to want to disable notifications for the
individual cluster elements (host or service definitions). Even though no notifications will be sent about
the individual elements, you’ll still get a visual display of the individual host or service status in the
status CGI. This will be useful for pinpointing the source of problems within the cluster in the future.

Monitoring the overall cluster can be done by using the previously cached results of cluster elements.
Although you could re-check all elements of the cluster to determine the cluster’s status, why waste
bandwidth and resources when you already have the results cached? Where are the results cached?
Cached results for cluster elements can be found in the status file (assuming you are monitoring each
element). The check_cluster plugin is designed specifically for checking cached host and service states in
the status file. Important: Although you didn’t enable notifications for individual elements of the cluster,
you will want them enabled for the overall cluster status check.

Using the check_cluster Plugin

The check_cluster plugin is designed to report the overall status of a host or service cluster by checking
the status information of each individual host or service cluster elements.

129

http://www.linux-ha.org/

More to come... The check_cluster plugin can be found in the contrib directory of the Nagios Plugins
release at http://sourceforge.net/projects/nagiosplug/.

Monitoring Service Clusters

Let’s say you have three DNS servers that provide redundant services on your network. First off, you
need to be monitoring each of these DNS servers seperately before you can monitor them as a cluster. I’ll
assume that you already have three seperate services (all called "DNS Service") associated with your
DNS hosts (called "host1", "host2" and "host3").

In order to monitor the services as a cluster, you’ll need to create a new "cluster" service. However,
before you do that, make sure you have a service cluster check command configured. Let’s assume that
you have a command called check_service_cluster defined as follows:

define command{
 command_name check_service_cluster
 command_line /usr/local/nagios/libexec/check_cluster --service -l $ARG1$ -w $ARG2$ -c $ARG3$ -d $ARG4$
 }

Now you’ll need to create the "cluster" service and use the check_service_cluster command you just
created as the cluster’s check command. The example below gives an example of how to do this. The
example below will generate a CRITICAL alert if 2 or more services in the cluster are in a non-OK state,
and a WARNING alert if only 1 of the services is in a non-OK state. If all the individual service members
of the cluster are OK, the cluster check will return an OK state as well.

define service{
 ...
 check_command check_service_cluster!"DNS Cluster"!1!2!$SERVICESTATEID:host1:DNS Service$,$SERVICESTATEID:host2:DNS Service$,$SERVICESTATEID:host3:DNS Service$
 ...
 }

It is important to notice that we are passing a comma-delimited list of on-demand service state macros to
the $ARG4$ macro in the cluster check command. That’s important! Nagios will fill those on-demand
macros in with the current service state IDs (numerical values, rather than text strings) of the individual
members of the cluster.

Monitoring Host Clusters

Monitoring host clusters is very similiar to monitoring service clusters. Obviously, the main difference is
that the cluster members are hosts and not services. In order to monitor the status of a host cluster, you
must define a service that uses the check_cluster plugin. The service should not be associated with any of
the hosts in the cluster, as this will cause problems with notifications for the cluster if that host goes
down. A good idea might be to associate the service with the host that Nagios is running on. After all, if
the host that Nagios is running on goes down, then Nagios isn’t running anymore, so there isn’t
anything you can do as far as monitoring (unless you’ve setup redundant monitoring hosts)...

Anyway, let’s assume that you have a check_host_cluster command defined as follows:

define command{
 command_name check_host_cluster
 command_line /usr/local/nagios/libexec/check_cluster --host -l $ARG1$ -w $ARG2$ -c $ARG3$ -d $ARG4$
 }

Let’s say you have three hosts (named "host1", "host2" and "host3") in the host cluster. If you want
Nagios to generate a warning alert if one host in the cluster is not UP or a critical alert if two or more
hosts are not UP, the the service you define to monitor the host cluster might look something like this:

130

http://sourceforge.net/projects/nagiosplug/

define service{
 ...
 check_command check_host_cluster!"Super Host Cluster"!1!2!$HOSTSTATEID:host1$,$HOSTSTATEID:host2$,$HOSTSTATEID:host3$
 ...
 }

It is important to notice that we are passing a comma-delimited list of on-demand host state macros to the
$ARG4$ macro in the cluster check command. That’s important! Nagios will fill those on-demand
macros in with the current host state IDs (numerical values, rather than text strings) of the individual
members of the cluster.

That’s it! Nagios will periodically check the status of the host cluster and send notifications to you when
its status is degraded (assuming you’ve enabled notification for the service). Note that for thehost
definitions of each cluster member, you will most likely want to disable notifications when the host goes
down . Remeber that you don’t care as much about the status of any individual host as you do the
overall status of the cluster. Depending on your network layout and what you’re trying to accomplish,
you may wish to leave notifications for unreachable states enabled for the host definitions.

131

Host and Service Dependencies

Introduction

Service and host dependencies are an advanced feature that allow you to control the behavior of hosts
and services based on the status of one or more other hosts or services. I’ll explain how dependencies
work, along with the differences between host and service dependencies.

Service Dependencies Overview

The image below shows an example logical layout of service dependencies. There are a few things you
should notice:

1. A service can be dependent on one or more other services

2. A service can be dependent on services which are not associated with the same host

3. Service dependencies are not inherited (unless specifically configured to)

4. Service dependencies can be used to cause service execution and service notifications to be
suppressed under different circumstances (OK, WARNING, UNKNOWN, and/or CRITICAL
states)

132

Defining Service Dependencies

First, the basics. You create service dependencies by adding service dependency definitions in your
object config file(s). In each definition you specify the dependent service, the service you are depending on,
and the criteria (if any) that cause the execution and notification dependencies to fail (these are described
later).

You can create several dependencies for a given service, but you must add a separate service
dependency definition for each dependency you create.

In the image above, the dependency definitions for Service F on Host C would be defined as follows:

define servicedependency{
 host_name Host B
 service_description Service D
 dependent_host_name Host C

133

 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria w,u
 }

define servicedependency{
 host_name Host B
 service_description Service E
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria n
 notification_failure_criteria w,u,c
 }

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria w
 notification_failure_criteria c
 }

The other dependency definitions shown in the image above would be defined as follows:

define servicedependency{
 host_name Host A
 service_description Service A
 dependent_host_name Host B
 dependent_service_description Service D
 execution_failure_criteria u
 notification_failure_criteria n
 }

define servicedependency{
 host_name Host A
 service_description Service B
 dependent_host_name Host B
 dependent_service_description Service E
 execution_failure_criteria w,u
 notification_failure_criteria c
 }

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host B
 dependent_service_description Service E
 execution_failure_criteria n
 notification_failure_criteria w,u,c
 }

How Service Dependencies Are Tested

Before Nagios executes a service check or sends notifications out for a service, it will check to see if the
service has any dependencies. If it doesn’t have any dependencies, the check is executed or the
notification is sent out as it normally would be. If the service does have one or more dependencies,
Nagios will check each dependency entry as follows:

1. Nagios gets the current status * of the service that is being depended upon.

2. Nagios compares the current status of the service that is being depended upon against either the
execution or notification failure options in the dependency definition (whichever one is relevant at
the time).

134

3. If the current status of the service that is being depended upon matches one of the failure options, the
dependency is said to have failed and Nagios will break out of the dependency check loop.

4. If the current state of the service that is being depended upon does not match any of the failure
options for the dependency entry, the dependency is said to have passed and Nagios will go on and
check the next dependency entry.

This cycle continues until either all dependencies for the service have been checked or until one
dependency check fails.

* One important thing to note is that by default, Nagios will use the most current hard state of the
service(s) that is/are being depended upon when it does the dependeny checks. If you want Nagios to
use the most current state of the services (regardless of whether its a soft or hard state), enable the
soft_service_dependencies option.

Execution Dependencies

Execution dependencies are used to restrict when active checks of a service can be performed. Passive
checks are not restricted by execution dependencies.

If all of the execution dependency tests for the service passed, Nagios will execute the check of the service
as it normally would. If even just one of the execution dependencies for a service fails, Nagios will
temporarily prevent the execution of checks for that (dependent) service. At some point in the future the
execution dependency tests for the service may all pass. If this happens, Nagios will start checking the
service again as it normally would. More information on the check scheduling logic can be found here.

In the example above, Service E would have failed execution dependencies if Service B is in a
WARNING or UNKNOWN state. If this was the case, the service check would not be performed and the
check would be scheduled for (potential) execution at a later time.

Notification Dependencies

If all of the notification dependency tests for the service passed, Nagios will send notifications out for the
service as it normally would. If even just one of the notification dependencies for a service fails, Nagios
will temporarily repress notifications for that (dependent) service. At some point in the future the
notification dependency tests for the service may all pass. If this happens, Nagios will start sending out
notifications again as it normally would for the service. More information on the notification logic can be
found here.

In the example above, Service F would have failed notification dependencies if Service C is in a
CRITICAL state, and/or Service D is in a WARNING or UNKNOWN state, and/or if Service E is in a
WARNING, UNKNOWN, or CRITICAL state. If this were the case, notifications for the service would
not be sent out.

Dependency Inheritance

As mentioned before, service dependencies are not inherited by default. In the example above you can
see that Service F is dependent on Service E. However, it does not automatically inherit Service E’s
dependencies on Service B and Service C. In order to make Service F dependent on Service C we had to
add another service dependency definition. There is no dependency definition for Service B, so Service F
is not dependent on Service B.

If you do wish to make service dependencies inheritable, you must use the inherits_parent directive in the
service dependency definition. When this directive is enabled, it indicates that the dependency inherits
dependencies of the service that is being depended upon (also referred to as the master service). In other
words, if the master service is dependent upon other services and any one of those dependencies fail,
this dependency will also fail.

135

In the example above, imagine that you want to add a new dependency for service F to make it
dependent on service A. You could create a new dependency definition that specified service F as the
dependent service and service A as being the master service (i.e. the service that is being dependend on). You
could alternatively modify the dependency definition for services D and F to look like this:

define servicedependency{
 host_name Host B
 service_description Service D
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria n
 inherits_parent 1
 }

Since the inherits_parent directive is enabled, the dependency between services A and D will be tested
when the dependency between services F and D are being tested.

Dependencies can have multiple levels of inheritence. If the dependency definition between A and D
had its inherits_parent directive enable and service A was dependent on some other service (let’s call it
service G), the service F would be dependent on services D, A, and G (each with potentially different
criteria).

Host Dependencies

As you’d probably expect, host dependencies work in a similiar fashion to service dependencies. The big
difference is that they’re for hosts, not services. Another difference is that host dependencies only work
for suppressing host notifications, not host checks.

BEWARE! Do not confuse host dependencies with parent/child host relationships. You should be using
parent/child host relationships (defined with the parents directive in host definitions) for most cases,
rather than host dependencies.

The image below shows an example of the logical layout of host dependencies.

136

In the image above, the dependency definitions for Host C would be defined as follows:

define hostdependency{
 host_name Host A
 dependent_host_name Host C
 notification_failure_criteria d
 }

define hostdependency{
 host_name Host B
 dependent_host_name Host C
 notification_failure_criteria d,u
 }

As with service dependencies, host dependencies are not inherited. In the example image you can see
that Host C does not inherit the host dependencies of Host B. In order for Host C to be dependent on
Host A, a new host dependency definition must be defined.

Host notification dependencies work in a similiar manner to service notification dependencies. If all of
the notification dependency tests for the host pass, Nagios will send notifications out for the host as it
normally would. If even just one of the notification dependencies for a host fails, Nagios will

137

temporarily repress notifications for that (dependent) host. At some point in the future the notification
dependency tests for the host may all pass. If this happens, Nagios will start sending out notifications
again as it normally would for the host. More information on the notification logic can be found here.

NOTE: Host execution dependencies work in a similiar manner to service execution dependencies.
However, they only have an affect on regularly scheduled host checks. On-demand host checks are not
affected by host execution dependencies.

138

State Stalking

Introduction

State "stalking" is a feature which is probably not going to used by most users. When enabled, it allows
you to log changes in service and host checks even if the state of the host or service does not change.
When stalking is enabled for a particular host or service, Nagios will watch that service very carefully
and log any changes it sees. As you’ll see, it can be very helpful to you in later analysis of the log files.

How Does It Work?

Under normal circumstances, the result of a host or service check is only logged if the host or service has
changed state since it was last checked. There are a few exceptions to this, but for the most part, that’s
the rule.

If you enable stalking for one or more states of a particular host or service, Nagios will log the results of
the host or service check if the output from the check differs from the output from the previous check.
Take the following example of eight consecutive checks of a service:

Service Check
#:

Service
State:

Service Check Output:

x OK RAID array optimal

x+1 OK RAID array optimal

x+2 WARNING RAID array degraded (1 drive bad, 1 hot spare rebuilding)

x+3 CRITICAL
RAID array degraded (2 drives bad, 1 host spare online, 1 hot spare
rebuilding)

x+4 CRIICAL RAID array degraded (3 drives bad, 2 hot spares online)

x+5 CRITICAL RAID array failed

x+6 CRITICAL RAID array failed

x+7 CRITICAL RAID array failed

Given this sequence of checks, you would normally only see two log entries for this catastrophe. The
first one would occur at service check x+2 when the service changed from an OK state to a WARNING
state. The second log entry would occur at service check x+3 when the service changed from a
WARNING state to a CRITICAL state.

For whatever reason, you may like to have the complete history of this catasrophe in your log files.
Perhaps to help explain to your manager how quickly the situation got out of control, perhaps just to
laugh at over a couple of drinks at the local pub, whatever...

Well, if you had enabled stalking of this service for CRITICAL states, you would have events at x+4 and
x+5 logged in addition to the events at x+2 and x+3. Why is this? With state stalking enabled, Nagios
would have examined the output from each service check to see if it differed from the output of the
previous check. If the output differed and the state of the service didn’t change between the two checks,
the result of the newer service check would get logged.

139

A similiar example of stalking might be on a service that checks your web server. If the check_http
plugin first returns a WARNING state because of a 404 error and on subsequent checks returns a
WARNING state because of a particular pattern not being found, you might want to know that. If you
didn’t enable state stalking for WARNING states of the service, only the first WARNING state event (the
404 error) would be logged and you wouldn’t have any idea (looking back in the archived logs) that
future problems were not due to a 404, but rather a missing pattern in the returned web page.

Should I Enable Stalking?

First, you must decide if you have a real need to analyze archived log data to find the exact cause of a
problem. You may decide you need this feature for some hosts or services, but not for all. You may also
find that you only have a need to enable stalking for some host or service states, rather than all of them.
For example, you may decide to enable stalking for WARNING and CRITICAL states of a service, but
not for OK and UNKNOWN states.

The decision to to enable state stalking for a particular host or service will also depend on the plugin that
you use to check that host or service. If the plugin always returns the same text output for a particular
state, there is no reason to enable stalking for that state.

How Do I Enable Stalking?

You can enable state stalking for hosts and services by using the stalking_options directive in host and
service definitions.

Caveats

You should be aware that there are some potential pitfalls with enabling stalking. These all relate to the
reporting functions found in various CGIs (histogram, alert summary, etc.). Because state stalking will
cause additional alert entries to be logged, the data produced by the reports will show evidence of
inflated numbers of alerts.

As a general rule, I would suggest that you not enable stalking for hosts and services without thinking
things through. Still, its there if you need and want it.

140

Performance Data

Introduction

Nagios is designed to allow plugins to return optional performance data in addition to normal status
data, as well as allow you to pass that performance data to external applications for processing. A
description of the different types of performance data, as well as information on how to go about
processing that data is described below...

Types of Performance Data

There are two basic categories of performance data that can be obtained from Nagios:

1. Check performance data

2. Plugin performance data

Check performance data is internal data that relates to the actual execution of a host or service check. This
might include things like service check latency (i.e. how "late" was the service check from its scheduled
execution time) and the number of seconds a host or service check took to execute. This type of
performance data is available for all checks that are performed. The $HOSTEXECUTIONTIME$ and
$SERVICEEXECUTIONTIME$ macros can be used to determine the number of seconds a host or service
check was running and the $HOSTLATENCY$ and $SERVICELATENCY$ macros can be used to
determine how "late" a regularly-scheduled host or service check was.

Plugin performance data is external data specific to the plugin used to perform the host or service check.
Plugin-specific data can include things like percent packet loss, free disk space, processor load, number
of current users, etc. - basically any type of metric that the plugin is measuring when it executes.
Plugin-specific performance data is optional and may not be supported by all plugins. As of this writing,
no plugins return performance data, although they mostly likely will in the near future. Plugin-specific
performance data (if available) can be obtained by using the $HOSTPERFDATA$ and
$SERVICEPERFDATA$ macros. See below for more information on how plugins can return
performance data to Nagios for inclusion in the $HOSTPERFDATA$ and $SERVICEPERFDATA$
macros.

Performance Data Support For Plugins

Normally plugins return a single line of text that indicates the status of some type of measurable data.
For example, the check_ping plugin might return a line of text like the following:

PING ok - Packet loss = 0%, RTA = 0.80 ms

With this type of output, the entire line of text is available in the $HOSTOUTPUT$ or
$SERVICEOUTPUT$ macros (depending on whether this plugin was used as a host check or service
check).

In order to facilitate the passing of plugin-specific performance data to Nagios, the plugin specification
has been expanded. If a plugin wishes to pass performance data back to Nagios, it does so by sending
the normal text string that it usually would, followed by a pipe character (|), and then a string
containing one or more performance data metrics. Let’s take the check_ping plugin as an example and
assume that it has been enhanced to return percent packet loss and average round trip time as
performance data metrics. A sample plugin output might look like this:

141

PING ok - Packet loss = 0%, RTA = 0.80 ms | percent_packet_loss=0, rta=0.80

When Nagios seems this format of plugin output it will split the output into two parts: everything before
the pipe character is considered to be the "normal" plugin output and everything after the pipe character
is considered to be the plugin-specific performance data. The "normal" output gets stored in the
$HOSTOUTPUT$ or $SERVICEOUTPUT$ macro, while the optional performance data gets stored in the
$HOSTPERFDATA$ or $SERVICEPERFDATA$ macro. In the example above, the $HOSTOUTPUT$ or
$SERVICEOUTPUT$ macro would contain "PING ok - Packet loss = 0%, RTA = 0.80 ms" (without quotes)
and the $HOSTPERFDATA$ or $SERVICEPERFDATA$ macro would contain "percent_packet_loss=0,
rta=0.80" (without quotes).

Format of Performance Data Output

The Nagios daemon doesn’t directly process performance data, so it doesn’t really care what the
performance data looks like. There aren’t really any inherent limitations on the format or content of the
performance data. However, if you are using an external addon to process the performance data (i.e.
PerfParse), the addon may be expecting that the plugin returns performance data in a specific format.
Check the documentation that comes with the addon for more information. Also, make sure to check the
plugin developer guidelines at SourceForge (http://nagiosplug.sourceforge.net/) for information on
writing plugins.

Enabling Performance Data Processing

If you want to process the performance data that is available from Nagios and the plugins, you’ll need to
do the following:

1. Enable the process_performance_data option.

2. Configure Nagios so that performance data is written to files and/or processed by executing
commands.

Writing Performance Data To Files

You can have Nagios write all host and service performance data to files using the host_perfdata_file
and service_perfdata_file options. You can control how the data is written to those files using the
host_perfdata_file_template and service_perfdata_file_template options. Additionally, you can have
Nagios periodically execute commands to process the performance data files using the
host_perfdata_file_processing_command and service_perfdata_file_processing_command options.

Processing Performance Data Using Commands

You can have Nagios process host and service performance data by executing commands by using the
host_perfdata_command or service_perfdata_command options. An example command definition that
simply writes service performance data to a file is shown below:

define command{
 command_name process-service-perfdata
 command_line /bin/echo -e "$LASTSERVICECHECK$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICESTATE$\t$SERVICEATTEMPT$\t$SERVICESTATETYPE$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$S...
 }

142

http://nagiosplug.sourceforge.net/

Scheduled Downtime

Introduction

Nagios allows you to schedule periods of planned downtime for hosts and service that you’re
monitoring. This is useful in the event that you actually know you’re going to be taking a server down
for an upgrade, etc. When a host a service is in a period of scheduled downtime, notifications for that
host or service will be suppressed.

Downtime File

Scheduled host and service downtime is stored in the file you specify by the downtime_file directive in
your main configuration file.

Downtime Retention

Scheduled host and service downtime is automatically preserved across program restarts. When Nagios
starts up, it will scan the downtime file, delete any old or invalid entries, and schedule downtime for all
valid host and service entries.

Scheduling Downtime

You can schedule downtime for hosts and service through the extinfo CGI (either when viewing host or
service information). Click in the "Schedule downtime for this host/service" link to actually schedule the
downtime.

Once you schedule downtime for a host or service, Nagios will add a comment to that host/service
indicating that it is scheduled for downtime during the period of time you indicated. When that period
of downtime passes, Nagios will automatically delete the comment that it added. Nice, huh?

Fixed vs. Flexible Downtime

When you schedule downtime for a host or service through the web interface you’ll be asked if the
downtime is fixed or flexible. Here’s an explanation of how "fixed" and "flexible" downtime differs:

"Fixed" downtime starts and stops at the exact start and end times that you specify when you schedule
it. Okay, that was easy enough...

"Flexible" downtime is intended for times when you know that a host or service is going to be down for
X minutes (or hours), but you don’t know exactly when that’ll start. When you schedule flexible
downtime, Nagios will start the scheduled downtime sometime between the start and end times you
specified. The downtime will last for as long as the duration you specified when you scheduled the
downtime. This assumes that the host or service for which you scheduled flexible downtime either goes
down (or becomes unreachable) or goes into a non-OK state sometime between the start and end times
you specified. The time at which a host or service transitions to a problem state determines the time at
which Nagios actually starts the downtime. The downtime will then last for the duration you specified,
even if the host or service recovers before the downtime expires. This is done for a very good reason. As
we all know, you can think you’ve got a problem fixed (and restart a server) ten times before it actually
works right. Smart, eh?

Triggered Downtime

143

When scheduling host or service downtime you have the option of making it "triggered" downtime.
What is triggered downtime, you ask? With triggered downtime the start of the downtime is triggered
by the start of some other scheduled host or service downtime. This is extremely useful if you’re
scheduling downtime for a large number or hosts or services and the start time of the downtime period
depends on the start time of another downtime entry. For instance, if you schedule flexible downtime for
a particular host (because its going down for maintenance), you might want to schedule triggered
downtime for all of that hosts’s "children".

How Scheduled Downtime Affects Notifications

When a host or service is in a period of scheduled downtime, Nagios will not allow notifications to be
sent out for the host or service. suppression of notifications is accomplished by adding an additional
filter to the notification logic. You will not see an icon in the CGIs indicating that notifications for that
host/service are disabled. When the scheduled downtime has passed, Nagios will allow notifications to
be sent out for the host or service as it normally would.

Overlapping Scheduled Downtime

I like to refer to this as the "Oh crap, its not working" syndrome. You know what I’m talking about. You
take a server down to perform a "routine" hardware upgrade, only to later realize that the OS drivers
aren’t working, the RAID array blew up, or the drive imaging failed and left your original disks useless
to the world. Moral of the story is that any routine work on a server is quite likely to take three or four
times as long as you had originally planned...

Let’s take the following scenario:

1. You schedule downtime for host A from 7:30pm-9:30pm on a Monday

2. You bring the server down about 7:45pm Monday evening to start a hard drive upgrade

3. After wasting an hour and a half battling with SCSI errors and driver incompatabilities, you finally
get the machine to boot up

4. At 9:15 you realize that one of your partitions is either hosed or doesn’t seem to exist anywhere on
the drive

5. Knowing you’re in for a long night, you go back and schedule additional downtime for host A from
9:20pm Monday evening to 1:30am Tuesday Morning.

If you schedule overlapping periods of downtime for a host or service (in this case the periods were
7:40pm-9:30pm and 9:20pm-1:30am), Nagios will wait until the last period of scheduled downtime is
over before it allows notifications to be sent out for that host or service. In this example notifications
would be suppressed for host A until 1:30am Tuesday morning.

144

Using The Embedded Perl Interpreter

Introduction

Stephen Davies has contributed code that allows you to compile Nagios with an embedded Perl
interpreter. This may be of interest to you if you rely heavily on plugins written in Perl.

Stanley Hopcroft has worked with the embedded Perl interpreter quite a bit and has commented on the
advantages/disadvanges of using it. He has also given several helpful hints on creating Perl plugins that
work properly with the embedded interpreter. The majority of this documentation comes from his
comments.

It should be noted that "ePN", as used in this documentation, refers to embedded Perl Nagios, or if you
prefer, Nagios compiled with an embedded Perl interpreter.

Advantages

Some advantages of ePN (embedded Perl Nagios) include:

Nagios will spend much less time running your Perl plugins because it no longer forks to execute
the plugin (each time loading the Perl interpreter). Instead, it executes your plugin by making a
library call.

It greatly reduces the system impact of Perl plugins and/or allows you to run more checks with Perl
plugin than you otherwise would be able to. In other words, you have less incentive to write
plugins in other languages such as C/C++, or Expect/TCL, that are generally recognised to have
development times at least an order of magnitude slower than Perl (although they do run about ten
times faster also - TCL being an exception).

If you are not a C programmer, then you can still get a huge amount of mileage out of Nagios by
letting Perl do all the heavy lifting without having Nagios slow right down. Note however, that the
ePN will not speed up your plugin (apart from eliminating the interpreter load time). If you want
fast plugins then consider Perl XSUBs (XS), or C after you are sure that your Perl is tuned and that
you have a suitable algorithm (Benchmark.pm is invaluable for comparing the performance of Perl
language elements).

Using the ePN is an excellent opportunity to learn more about Perl.

Disadvantages

The disadvantages of ePN (embedded Perl Nagios) are much the same as Apache mod_perl (i.e. Apache
with an embedded interpreter) compared to a plain Apache:

A Perl program that works fine with plain Nagios may not work with the ePN. You may have to
modify your plugins to get them to work.

Perl plugins are harder to debug under an ePN than under a plain Nagios.

Your ePN will have a larger SIZE (memory footprint) than a plain Nagios.

Some Perl constructs cannot be used or may behave differently than what you would expect.

You may have to be aware of ’more than one way to do it’ and choose a way that seems less
attractive or obvious.

You will need greater Perl knowledge (but nothing very esoteric or stuff about Perl internals -
unless your plugin uses XSUBS).

Target Audience

145

Average Perl developers; those with an appreciation of the languages powerful features without
knowledge of internals or an in depth knowledge of those features.

Those with a utilitarian appreciation rather than a great depth of understanding.

If you are happy with Perl objects, name management, data structures, and the debugger, that’s
probably sufficient.

Things you should do when developing a Perl Plugin (ePN or not)

Always always generate some output

Use ’use utils’ and import the stuff it exports ($TIMEOUT %ERRORS &print_revision &support)

Have a look at how the standard Perl plugins do their stuff e.g.

Always exit with $ERRORS{CRITICAL}, $ERRORS{OK}, etc.

Use getopt to read command line arguments

Manage timeouts

Call print_usage (supplied by you) when there are no command line arguments

Use standard switch names (eg H ’host’, V ’version’)

Things you must do to develop a Perl plugin for ePN

1. <DATA> can not be used; use here documents instead e.g.

my $data = <<DATA;
portmapper 100000
portmap 100000
sunrpc 100000
rpcbind 100000
rstatd 100001
rstat 100001
rup 100001
..
DATA

%prognum = map { my($a, $b) = split; ($a, $b) } split(/\n/, $data) ;

2. BEGIN blocks will not work as you expect. May be best to avoid.

3. Ensure that it is squeaky clean at compile time i.e.

use strict

use perl -w (other switches [T notably] may not help)

use perl -c

4. Avoid lexical variables (my) with global scope as a means of passing __variable__ data into
subroutines. In fact this is __fatal__ if the subroutine is called by the plugin more than once when
the check is run. Such subroutines act as ’closures’ that lock the global lexicals first value into
subsequent calls of the subroutine. If however, your global is read-only (a complicated structure for
example) this is not a problem. What Bekman recommends you do instead, is any of the following:

make the subroutine anonymous and call it via a code ref e.g.

turn this into

my $x = 1 ; my $x = 1 ;
sub a { .. Process $x ... } $a_cr = sub { ... Process $x ... } ;
. .
. .
a ; &$a_cr ;
$x = 2 $x = 2 ;
a ; &$a_cr ;

anon closures __always__ rebind the current lexical value

146

http://perl.apache.org/guide/

put the global lexical and the subroutine using it in their own package (as an object or a
module)

pass info to subs as references or aliases (\$lex_var or $_[n])

replace lexicals with package globals and exclude them from ’use strict’ objections with ’use
vars qw(global1 global2 ..)’

5. Be aware of where you can get more information.

Useful information can be had from the usual suspects (the O’Reilly books, plus Damien
Conways "Object Oriented Perl") but for the really useful stuff in the right context start at Stas
Bekman’s mod_perl guide at http://perl.apache.org/guide/.

This wonderful book sized document has nothing whatsoever about Nagios, but all about
writing Perl programs for the embedded Perl interpreter in Apache (ie Doug MacEacherns
mod_perl).

The perlembed manpage is essential for context and encouragement.

On the basis that Lincoln Stein and Doug MacEachern know a thing or two about Perl and
embedding Perl, their book ’Writing Apache Modules with Perl and C’ is almost certainly
worth looking at.

6. Be aware that your plugin may return strange values with an ePN and that this is likely to be caused
by the problem in item #4 above

7. Be prepared to debug via:

having a test ePN and

adding print statements to your plugin to display variable values to STDERR (can’t use
STDOUT)

adding print statements to p1.pl to display what ePN thinks your plugin is before it tries to run
it (vi)

running the ePN in foreground mode (probably in conjunction with the former
recommendations)

use the ’Deparse’ module on your plugin to see how the parser has optimised it and what the
interpreter will actually get. (see ’Constants in Perl’ by Sean M. Burke, The Perl Journal, Fall
2001)
perl -MO::Deparse <your_program>

8. Be aware of what ePN is transforming your plugin too, and if all else fails try and debug the
transformed version.

As you can see below p1.pl rewrites your plugin as a subroutine called ’hndlr’ in the package
named ’Embed::<something_related_to_your_plugin_file_name>’.

Your plugin may be expecting command line arguments in @ARGV so pl.pl also assigns @_ to
@ARGV.

This in turn gets ’eval’ ed and if the eval raises an error (any parse error and run error), the
plugin gets chucked out.

The following output shows how a test ePN transformed the check_rpc plugin before attempting
to execute it. Most of the code from the actual plugin is not shown, as we are interested in only
the transformations that the ePN has made to the plugin). For clarity, transformations are
shown in red:

147

http://perl.apache.org/guide/

 package main;
 use subs ’CORE::GLOBAL::exit’;
 sub CORE::GLOBAL::exit { die "ExitTrap: $_[0]
(Embed::check_5frpc)"; }
 package Embed::check_5frpc; sub hndlr { shift(@_);
@ARGV=@_;
#! /usr/bin/perl -w
#
check_rpc plugin for Nagios
#
usage:
check_rpc host service
#
Check if an rpc serice is registered and running
using rpcinfo - $proto $host $prognum 2>&1 |";
#
Use these hosts.cfg entries as examples
#
command[check_nfs]=/some/path/libexec/check_rpc $HOSTADDRESS$ nfs
service[check_nfs]=NFS;24x7;3;5;5;unix-admin;60;24x7;1;1;1;;check_rpc
#
initial version: 3 May 2000 by Truongchinh Nguyen and Karl DeBisschop
current status: $Revision: 1.26.2.2 $
#
Copyright Notice: GPL
#
... rest of plugin code goes here (it was removed for brevity) ...
}

9. Don’t use ’use diagnostics’ in a plugin run by your production ePN. I think it causes__all__ the Perl
plugins to return CRITICAL.

10. Consider using a mini embedded Perl C program to check your plugin. This is not sufficient to
guarantee your plugin will perform Ok with an ePN but if the plugin fails this test it will ceratinly
fail with your ePN. [A sample mini ePN is included in the contrib/ directory of the Nagios
distribution for use in testing Perl plugins. Change to the contrib/ directory and type ’make
mini_epn’ to compile it. It must be executed from the same directory that the p1.pl file resides in
(this file is distributed with Nagios).]

Compiling Nagios With The Embedded Perl Interpreter

Okay, you can breathe again now. So do you still want to compile Nagios with the embedded Perl
interpreter? ;-)

If you want to compile Nagios with the embedded Perl interpreter you need to rerun the configure script
with the addition of the --enable-embedded-perl option. If you want the embedded interpreter to cache
internally compiled scripts, add the --with-perlcache option as well. Example:

 ./configure --enable-embedded-perl --with-perlcache ...other options...

Once you’ve rerun the configure script with the new options, make sure to recompile Nagios. You can
check to make sure that Nagios has been compile with the embedded Perl interpreter by executing it
with the -m command-line argument. Output from executing the command will look something like this
(notice that the embedded perl interpreter is listed in the options section):

 [nagios@firestore]# ./nagios -m

 Nagios 1.0a0
 Copyright (c) 1999-2001 Ethan Galstad (nagios@nagios.org)
 Last Modified: 07-03-2001
 License: GPL

148

 External Data I/O

 Object Data: DEFAULT
 Status Data: DEFAULT
 Retention Data: DEFAULT
 Comment Data: DEFAULT
 Downtime Data: DEFAULT
 Performance Data: DEFAULT

 Options

 * Embedded Perl compiler (With caching)

149

Adaptive Monitoring

Introduction

Nagios allows you to change certain commands and host and service check attributes during runtime.
I’ll refer to this feature as "adaptive monitoring". Please note that the adaptive monitoring features found
in Nagios will probably not be of much use to 99% of users, but they do allow you to do some neat
things.

What Can Be Changed?

The following service check attributes can be changed during runtime:

Check command (and command arguments)

Event handler command (and command arguments)

Check interval

Max check attempts

The following host check attributes can be changed during runtime:

Check command (and command arguments)

Event handler command (and command arguments)

Check interval

Max check attempts

The following global attributes can be changed during runtime:

Global host event handler command (and command arguments)

Global service event handler command (and command arguments)

External Commands For Adaptive Monitoring

In order to change global or host- or service-specific attributes during runtime, you must submit the
appropriate external command to Nagios via the external command file. The table below lists the
different attributes that may be changed during runtime, along with the external command to
accomplish the job.

NOTE: When changing check commands or event handler commands, it is important to note that these
commands must have been configured using command definitions before Nagios was started. Any
request to change an check or event event handler command to use a command which has not been
defined is ignore. Also of note, you specify command arguments along with the actual command name -
just seperate individual arguments from the command name (and from each other) using bang (!)
characters. More information on how arguments in command definitions are processed during runtime
can be found in the documentation on macros.

Attribute External Command Notes

150

Service check command CHANGE_SVC_CHECK_COMMAND:command_name

Changes the
service’s
current check
command to
whatever you
specify in the
command_name
argument.

Service event handler CHANGE_SVC_EVENT_HANDLER:command_name

Changes the
service’s
current event
handler
command to
whatever you
specify in the
command_name
argument.

Service check interval CHANGE_NORMAL_SVC_CHECK_INTERVAL:interval

Changes the
service’s
normal check
interval to be
whatever you
specify in the
interval
argument.

Service check retry interval CHANGE_RETRY_SVC_CHECK_INTERVAL:interval

Changes the
services’ retry
check interval
to be whatever
you specify in
the interval
argument.

Max service check attempts CHANGE_MAX_SVC_CHECK_ATTEMPTS:attempts

Changes the
maximum
number of
check
attempts for
the service to
whatever you
specify in the
attempts
argument.

Host check command CHANGE_HOST_CHECK_COMMAND:command_name

Changes the
host’s current
check
command to
whatever you
specify in the
command_name
argument.

151

Host event handler CHANGE_HOST_EVENT_HANDLER:command_name

Changes the
host’s current
event handler
command to
whatever you
specify in the
command_name
argument.

Host check interval CHANGE_NORMAL_HOST_CHECK_INTERVAL:interval

Changes the
host’s check
interval to be
whatever you
specify in the
interval
argument.

Max host check attempts CHANGE_MAX_HOST_CHECK_ATTEMPTS:attempts

Changes the
maximum
number of
check
attempts for
the host to
whatever you
specify in the
attempts
argument.

Global host event handler CHANGE_GLOBAL_HOST_EVENT_HANDLER;command_name

Changes the
current global
host event
handler
command to
whatever you
specify in the
command_name
argument.

Global service event handler CHANGE_GLOBAL_SVC_EVENT_HANDLER;command_name

Changes the
current global
service event
handler
command to
whatever you
specify in the
command_name
argument.

152

Object Inheritance

Introduction

This documentation attempts to explain object inheritance and how it can be used in template-based
object definitions.

One of my primary motivations for adding support for template-based object data was its ability to
easily allow object definitions to inherit various properties from other object definitions. Object property
inheritance is accomplished through recursion when Nagios processes your configuration files.

If you are still confused about how recursion and inheritance work after reading this, take a look at the
sample object config files provided in the distribution. If that still doesn’t help, drop an email message
with a detailed description of your problem to the nagios-users mailing list.

Basics

There are three variables affecting recursion and inheritance that are present in all object definitions.
They are indicated in red as follows...

 define someobjecttype{
 object-specific variables ...
 name template_name
 use name_of_template_to_use
 register [0/1]
 }

The first variable is name. Its just a "template" name that can be referenced in other object definitions so
they can inherit the objects properties/variables. Template names must be unique amongst objects of the
same type, so you can’t have two or more host definitions that have "hosttemplate" as their template
name.

The second variable is use. This is where you specify the name of the template object that you want to
inherit properties/variables from. The name you specify for this variable must be defined as another
object’s template named (using the name variable).

The third variable is register. This variable is used to indicate whether or not the object definition should
be "registered" with Nagios. By default, all object definitions are registered. If you are using a partial
object definition as a template, you would want to prevent it from being registered (an example of this is
provided later). Values are as follows: 0 = do NOT register object definition, 1 = register object definition
(this is the default). This variable is NOT inherited; every (partial) object definition used as a template
must explicitly set the register directive to be 0. This prevents the need to override an inherited register
directive with a value of 1 for every object that should be registered.

Local Variables vs. Inherited Variables

One important thing to understand with inheritance is that "local" object variables always take
precedence over variables defined in the template object. Take a look at the following example of two
host definitions (not all required variables have been supplied):

153

 define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name hosttemplate1
 }

 define host{
 host_name bighost2
 max_check_attempts 3
 use hosttemplate1
 }

You’ll note that the definition for host bighost1 has been defined as having hosttemplate1 as its template
name. The definition for host bighost2 is using the definition of bighost1 as its template object. Once
Nagios processes this data, the resulting definition of host bighost2 would be equivalent to this
definition:

 define host{
 host_name bighost2
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

You can see that the check_command and notification_options variables were inherited from the template
object (where host bighost1 was defined). However, the host_name and max_check_attempts variables were
not inherited from the template object because they were defined locally. Remember, locally defined
variables override variables that would normally be inherited from a template object. That should be a
fairly easy concept to understand.

inheritance Chaining

Objects can inherit properties/variables from multiple levels of template objects. Take the following
example:

 define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name hosttemplate1
 }

 define host{
 host_name bighost2
 max_check_attempts 3
 use hosttemplate1
 name hosttemplate2
 }

 define host{
 host_name bighost3
 use hosttemplate2
 }

You’ll notice that the definition of host bighost3 inherits variables from the definition of host bighost2,
which in turn inherits variables from the definition of host bighost1. Once Nagios processes this
configuration data, the resulting host definitions are equivalent to the following:

154

 define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

 define host{
 host_name bighost2
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

 define host{
 host_name bighost3
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

There is no inherent limit on how "deep" inheritance can go, but you’ll probably want to limit yourself to
at most a few levels in order to maintain sanity.

Using Incomplete Object Definitions as Templates

It is possible to use imcomplete object definitions as templates for use by other object definitions. By
"incomplete" definition, I mean that all required variables in the object have not been supplied in the
object definition. It may sound odd to use incomplete definitions as templates, but it is in fact
recommended that you use them. Why? Well, they can serve as a set of defaults for use in all other object
definitions. Take the following example:

 define host{
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name generichosttemplate
 register 0
 }

 define host{
 host_name bighost1
 address 192.168.1.3
 use generichosthosttemplate
 }

 define host{
 host_name bighost2
 address 192.168.1.4
 use generichosthosttemplate
 }

Notice that the first host definition is incomplete because it is missing the required host_name variable.
We don’t need to supply a host name because we just want to use this definition as a generic host
template. In order to prevent this definition from being registered with Nagios as a normal host, we set
the register variable to 0.

The definitions of hosts bighost1 and bighost2 inherit their values from the generic host definition. The
only variable we’ve chosed to override is the address variable. This means that both hosts will have the
exact same properties, except for their host_name and address variables. Once Nagios processes the config
data in the example, the resulting host definitions would be equivalent to specifying the following:

155

 define host{
 host_name bighost1
 address 192.168.1.3
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

 define host{
 host_name bighost2
 address 192.168.1.4
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

At the very least, using a template definition for default variables will save you a lot of typing. It’ll also
save you a lot of headaches later if you want to change the default values of variables for a large number
of hosts.

156

Time-Saving Tricks For Object Definitions
or...

"How To Preserve Your Sanity"

Introduction

This documentation attempts to explain how you can exploit the (somewhat) hidden features of
template-based object definitions to save your sanity. How so, you ask? Several types of objects allow
you to specify multiple host names and/or hostgroup names in definitions, allowing you to "copy" the
object defintion to multiple hosts or services. I’ll cover each type of object that supports these features
seperately. For starters, the object types which support this time-saving feature are as follows:

Services

Service escalations

Service dependencies

Host escalations

Host dependencies

Hostgroups

Object types that are not listed above (i.e. timeperiods, commands, etc.) do not support the features I’m
about to describe.

Regular Expression Matching

The examples I give below use "standard" matching of object names. If you wish, you can enable regular
expression matching for object names by using the use_regexp_matching config option. By default,
regular expression matching will only be used in object names that contain the * and ? wildcard
characters. If you want regular expression matching to be used on all object names (regardless of
whether or not they contain the * and ? wildcard characters), enable the use_true_regexp_matching
config option.

Regular expressions can be used in any of the fields used in the examples below (host names, hostgroup
names, service names, and servicegroup names).

NOTE: Be careful when enabling regular expression matching - you may have to change your config file,
since some directives that you might not want to be interpreted as a regular expression just might be!
Any problems should become evident once you verify your configuration.

Service Definitions

Multiple Hosts: If you want to create identical services that are assigned to multiple hosts, you can
specify multiple hosts in the host_name directive as follows:

 define service{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 service_description SOMESERVICE
 other service directives ...
 }

The definition above would create a service called SOMESERVICE on hosts HOST1 through HOSTN. All
the instances of the SOMESERVICE service would be identical (i.e. have the same check command, max
check attempts, notification period, etc.).

157

All Hosts In Multiple Hostgroups: If you want to create identical services that are assigned to all hosts
in one or more hostgroups, you can do so by creating a single service definition. How? The
hostgroup_name directive allows you to specify the name of one or more hostgroups that the service
should be created for:

 define service{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 service_description SOMESERVICE
 other service directives ...
 }

The definition above would create a service called SOMESERVICE on all hosts that are members of
hostgroups HOSTGROUP1 through HOSTGROUPN. All the instances of the SOMESERVICE service
would be identical (i.e. have the same check command, max check attempts, notification period, etc.).

All Hosts: If you want to create identical services that are assigned to all hosts that are defined in your
configuration files, you can use a wildcard in the host_name directive as follows:

 define service{
 host_name *
 service_description SOMESERVICE
 other service directives ...
 }

The definition above would create a service called SOMESERVICE on all hosts that are defined in your
configuration files. All the instances of the SOMESERVICE service would be identical (i.e. have the same
check command, max check attempts, notification period, etc.).

Service Escalation Definitions

Multiple Hosts: If you want to create service escalations for services of the same name/description that
are assigned to multiple hosts, you can specify multiple hosts in the host_name directive as follows:

 define serviceescalation{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 service_description SOMESERVICE
 other escalation directives ...
 }

The definition above would create a service escalation for services called SOMESERVICE on hosts
HOST1 through HOSTN. All the instances of the service escalation would be identical (i.e. have the same
contact groups, notification interval, etc.).

All Hosts In Multiple Hostgroups: If you want to create service escalations for services of the same
name/description that are assigned to all hosts in in one or more hostgroups, you can do use the
hostgroup_name directive as follows:

 define serviceescalation{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 service_description SOMESERVICE
 other escalation directives ...
 }

The definition above would create a service escalation for services called SOMESERVICE on all hosts
that are members of hostgroups HOSTGROUP1 through HOSTGROUPN. All the instances of the service
escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

158

All Hosts: If you want to create identical service escalations for services of the same name/description
that are assigned to all hosts that are defined in your configuration files, you can use a wildcard in the
host_name directive as follows:

 define serviceescalation{
 host_name *
 service_description SOMESERVICE
 other escalation directives ...
 }

The definition above would create a service escalation for all services called SOMESERVICE on all hosts
that are defined in your configuration files. All the instances of the service escalation would be identical
(i.e. have the same contact groups, notification interval, etc.).

All Services On Same Host: If you want to create service escalations for all services assigned to a
particular host, you can use a wildcard in the service_description directive as follows:

 define serviceescalation{
 host_name HOST1
 service_description *
 other escalation directives ...
 }

The definition above would create a service escalation for all services on host HOST1. All the instances
of the service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

If you feel like being particularly adventurous, you can specify a wildcard in both the host_name and
service_description directives. Doing so would create a service escalation for all services that you’ve
defined in your configuration files.

Multiple Services On Same Host: If you want to create service escalations for all multiple services
assigned to a particular host, you can use a specify more than one service description in the
service_description directive as follows:

 define serviceescalation{
 host_name HOST1
 service_description SERVICE1,SERVICE2,...,SERVICEN
 other escalation directives ...
 }

The definition above would create a service escalation for services SERVICE1 through SERVICEN on
host HOST1. All the instances of the service escalation would be identical (i.e. have the same contact
groups, notification interval, etc.).

All Services In Multiple Servicegroups: If you want to create service escalations for all services that
belong in one or more servicegroups, you can do use the servicegroup_name directive as follows:

 define serviceescalation{
 servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN
 other escalation directives ...
 }

The definition above would create service escalations for all services that are members of servicegroups
SERVICEGROUP1 through SERVICEGROUPN. All the instances of the service escalation would be
identical (i.e. have the same contact groups, notification interval, etc.).

Service Dependency Definitions

159

Multiple Hosts: If you want to create service dependencies for services of the same name/description
that are assigned to multiple hosts, you can specify multiple hosts in the host_name and or
dependent_host_name directives as follows:

 define servicedependency{
 host_name HOST1,HOST2
 service_description SERVICE1
 dependent_host_name HOST3,HOST4
 dependent_service_description SERVICE2
 other dependency directives ...
 }

In the example above, service SERVICE2 on hosts HOST3 and HOST4 would be dependent on service
SERVICE1 on hosts HOST1 and HOST2. All the instances of the service dependencies would be identical
except for the host names (i.e. have the same notification failure criteria, etc.).

All Hosts In Multiple Hostgroups: If you want to create service dependencies for services of the same
name/description that are assigned to all hosts in in one or more hostgroups, you can do use the
hostgroup_name and/or dependent_hostgroup_name directives as follows:

 define servicedependency{
 hostgroup_name HOSTGROUP1,HOSTGROUP2
 service_description SERVICE1
 dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
 dependent_service_description SERVICE2
 other dependency directives ...
 }

In the example above, service SERVICE2 on all hosts in hostgroups HOSTGROUP3 and HOSTGROUP4
would be dependent on service SERVICE1 on all hosts in hostgroups HOSTGROUP1 and
HOSTGROUP2. Assuming there were five hosts in each of the hostgroups, this definition would be
equivalent to creating 100 single service dependency definitions! All the instances of the service
dependency would be identical except for the host names (i.e. have the same notification failure criteria,
etc.).

All Services On Same Host: If you want to create service dependencies for all services assigned to a
particular host, you can use a wildcard in the service_description and/or dependent_service_description
directives as follows:

 define servicedependency{
 host_name HOST1
 service_description *
 dependent_host_name HOST2
 dependent_service_description *
 other dependency directives ...
 }

In the example above, all services on host HOST2 would be dependent on all services on host HOST1.
All the instances of the service dependencies would be identical (i.e. have the same notification failure
criteria, etc.).

Multiple Services On Same Host: If you want to create service dependencies for multiple services
assigned to a particular host, you can specify more than one service description in the service_description
and/or dependent_service_description directives as follows:

160

 define servicedependency{
 host_name HOST1
 service_description SERVICE1,SERVICE2,...,SERVICEN
 dependent_host_name HOST2
 dependent_service_description SERVICE1,SERVICE2,...,SERVICEN
 other dependency directives ...
 }

All Services In Multiple Servicegroups: If you want to create service dependencies for all services that
belong in one or more servicegroups, you can do use the servicegroup_name and/or
dependent_servicegroup_name directive as follows:

 define servicedependency{
 servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN
 dependent_servicegroup_name SERVICEGROUP3,SERVICEGROUP4,...SERVICEGROUPN
 other escalation directives ...
 }

Host Escalation Definitions

Multiple Hosts: If you want to create host escalations for multiple hosts, you can specify multiple hosts
in the host_name directive as follows:

 define hostescalation{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 other escalation directives ...
 }

The definition above would create a host escalation for hosts HOST1 through HOSTN. All the instances
of the host escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

All Hosts In Multiple Hostgroups: If you want to create host escalations for all hosts in in one or more
hostgroups, you can do use the hostgroup_name directive as follows:

 define hostescalation{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 other escalation directives ...
 }

The definition above would create a host escalation on all hosts that are members of hostgroups
HOSTGROUP1 through HOSTGROUPN. All the instances of the host escalation would be identical (i.e.
have the same contact groups, notification interval, etc.).

All Hosts: If you want to create identical host escalations for all hosts that are defined in your
configuration files, you can use a wildcard in the host_name directive as follows:

 define hostescalation{
 host_name *
 other escalation directives ...
 }

The definition above would create a hosts escalation for all hosts that are defined in your configuration
files. All the instances of the host escalation would be identical (i.e. have the same contact groups,
notification interval, etc.).

Host Dependency Definitions

Multiple Hosts: If you want to create host dependencies for multiple hosts, you can specify multiple
hosts in the host_name and/or dependent_host_name directives as follows:

161

 define hostdependency{
 host_name HOST1,HOST2
 dependent_host_name HOST3,HOST4,HOST5
 other dependency directives ...
 }

The definition above would be equivalent to creating six seperate host dependencies. In the example
above, hosts HOST3, HOST4 and HOST5 would be dependent upon both HOST1 and HOST2. All the
instances of the host dependencies would be identical except for the host names (i.e. have the same
notification failure criteria, etc.).

All Hosts In Multiple Hostgroups: If you want to create host escalations for all hosts in in one or more
hostgroups, you can do use the hostgroup_name and /or dependent_hostgroup_name directives as follows:

 define hostdependency{
 hostgroup_name HOSTGROUP1,HOSTGROUP2
 dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
 other dependency directives ...
 }

In the example above, all hosts in hostgroups HOSTGROUP3 and HOSTGROUP4 would be dependent
on all hosts in hostgroups HOSTGROUP1 and HOSTGROUP2. All the instances of the host
dependencies would be identical except for host names (i.e. have the same notification failure criteria,
etc.).

Hostgroups

All Hosts: If you want to create a hostgroup that has all hosts that are defined in your configuration files
as members, you can use a wildcard in the members directive as follows:

 define hostgroup{
 hostgroup_name HOSTGROUP1
 members *
 other hostgroup directives ...
 }

The definition above would create a hostgroup called HOSTGROUP1 that has all all hosts that are
defined in your configuration files as members.

162

UCD-SNMP (NET-SNMP) Integration

Note: Nagios is not designed to be a replacement for a full-blown SNMP management application like
HP OpenView or OpenNMS. However, you can set things up so that SNMP traps received by a host on
your network can generate alerts in Nagios. Here’s how...

Introduction

This example explains how to easily generate alerts in Nagios for SNMP traps that are received by the
UCD-SNMP snmptrapd daemon. These directions assume that the host which is receiving SNMP traps is
not the same host on which Nagios is running. If your monitoring box is the same box that is receiving
SNMP traps you will need to make a few modifications to the examples I provide. Also, I am assuming
that you having installed the nsca daemon on your monitoring server and the nsca client (send_nsca) on
the machine that is receiving SNMP traps.

For the purposes of this example, I will be describing how I setup Nagios to generate alerts from SNMP
traps received by the ArcServe backup jobs running on my Novell servers. I wanted to get notified when
backups failed, so this worked very nicely for me. You’ll have to tweak the examples in order to make it
suit your needs.

Additional Software

Translating SNMP traps into Nagios events can be a bit tedious. If you’d like to make it easier, you
might want to check out Alex Burger’s SNMP Trap Translator project located at http://www.snmptt.org
which, combined with Net-SNMP, provides a more enhanced trap handling system. The snmptt
documentation includes integration details for Nagios.

Defining The Service

First off you’re going to have to define a service in your object configuration file for the SNMP traps (in
this example, I am defining a service for ArcServe backup jobs). Assuming that the host that the alerts
are originating from is called novellserver, a sample service definition might look something like this:

define service{
 host_name novellserver
 service_description ArcServe Backup
 is_volatile 1
 active_checks_enabled 0
 passive_checks_enabled 1
 max_check_attempts 1
 contact_groups novell-backup-admins
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 check_command check_none
 }

Important things to note are the fact that this service has the volatile option enabled. We want this option
enabled because we want a notification to be generated for every alert that comes in. Also of note is the
fact that active checks are disabled for the service, while passive checks are enabled. This means that the
service will never be actively checked - all alert information will have to be sent in passively by the nsca
client on the SNMP management host (in my example, it will be called firestorm).

ArcServe and Novell SNMP Configuration

163

http://www.opennms.org/
http://net-snmp.sourceforge.net/
http://www.snmptt.org/

In order to get ArcServe (and my Novell server) to send SNMP traps to my management host, I had to
do the following:

1. Modify the ArcServe autopilot job to send SNMP traps on job failures, successes, etc.

2. Edit SYS:\ETC\TRAPTARG.CFG and add the IP address of my management host (the one
receiving the SNMP traps)

3. Load SNMP.NLM

4. Load ALERT.NLM to facilitate the actual sending of the SNMP traps

SNMP Management Host Configuration

On my Linux SNMP management host (firestorm), I installed the UCD-SNMP (NET-SNMP) software.
Once the software was installed I had to do the following:

1. Install the ArcServe MIBs (included on the ArcServe installation CD)

2. Edit the snmptrapd configuration file (/etc/snmp/snmptrapd.conf) to define a trap handler for
ArcServe alerts. This is detailed below.

3. Start the snmptrapd daemon to listen for incoming SNMP traps

In order to have the snmptrapd daemon route ArcServe SNMP traps to our Nagios host, we’ve got to
define a traphandler in the /etc/snmp/snmptrapd.conf file. In my setup, the config file looked something
like this:

#############################
ArcServe SNMP Traps
#############################

Tape format failures
traphandle ARCserve-Alarm-MIB::arcServetrap9 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 9

Failure to read tape header
traphandle ARCserve-Alarm-MIB::arcServetrap10 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 10

Failure to position tape
traphandle ARCserve-Alarm-MIB::arcServetrap11 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 11

Cancelled jobs
traphandle ARCserve-Alarm-MIB::arcServetrap12 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 12

Successful jobs
traphandle ARCserve-Alarm-MIB::arcServetrap13 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 13

Imcomplete jobs
traphandle ARCserve-Alarm-MIB::arcServetrap14 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 14

Job failures
traphandle ARCserve-Alarm-MIB::arcServetrap15 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 15

This example assumes that you have a /usr/local/nagios/libexec/eventhandlers/ directory on your SNMP
mangement host and that the handle-arcserve-trap script exists there. You can modify these to fit your
setup. Anyway, the handle-arcserve-trap script on my management host looked something like this:

#!/bin/sh

Arguments:
$1 = trap type

 # First line passed from snmptrapd is FQDN of host that sent the trap
 read host

 # Given a FQDN, get the short name of the host as it is setup in Nagios
 hostname="unknown"
 case $host in
 novellserver.mylocaldomain.com)
 hostname="novellserver"
 ;;

164

http://net-snmp.sourceforge.net/

 nt.mylocaldomain.com)
 hostname="ntserver"
 ;;
 esac

 # Get severity level (OK, WARNING, UNKNOWN, or CRITICAL) and plugin output based on trape type
 state=-1
 output="No output"
 case "$1" in

 # failed to format tape - critical
 11)
 output="Critical: Failed to format tape"
 state=2
 ;;

 # failed to read tape header - critical
 10)
 output="Critical: Failed to read tape header"
 state=2
 ;;

 # failed to position tape - critical
 11)
 output="Critical: Failed to position tape"
 state=2
 ;;

 # backup cancelled - warning
 12)
 output="Warning: ArcServe backup operation cancelled"
 state=1
 ;;

 # backup success - ok
 13)
 output="Ok: ArcServe backup operation successful"
 state=0
 ;;

 # backup incomplete - warning
 14)
 output="Warning: ArcServe backup operation incomplete"
 state=1
 ;;

 # backup failure - critical
 15)
 output="Critical: ArcServe backup operation failed"
 state=2
 ;;
 esac

 # Submit passive check result to monitoring host
 /usr/local/nagios/libexec/eventhandlers/submit_check_result $hostname "ArcServe Backup" $state "$output"

exit 0

Notice that the handle-arcserve-trap script calls the submit_check_result script to actually send the alert back
to the monitoring host. Assuming your monitoring host is called monitor, the submit check_result script
might look like this (you’ll have to modify this to specify the proper location of the send_nsca program
on your management host):

#!/bin/sh

Arguments
$1 = name of host in service definition
$2 = name/description of service in service definition
$3 = return code
$4 = output

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/nagios/bin/send_nsca monitor -c /usr/local/nagios/etc/send_nsca.cfg

165

Finishing Up

You’ve now configured everything you need to, so all you have to do is restart the Nagios on your
monitoring server. That’s it! You should be getting alerts in Nagios whenever ArcServe jobs fail,
succeed, etc.

166

TCP Wrapper Integration

Introduction

This example explains how to easily generate alerts in Nagios for connection attempts that are rejected
by TCP wrappers. These directions assume that the host which you are generating alerts for (i.e. the host
you are using TCP wrappers on) is not the same host on which Nagios is running. If you want to
generate alerts on the same host that Nagios is running you will need to make a few modifications to the
examples I provide. Also, I am assuming that you having installed the nsca daemon on your monitoring
server and the nsca client (send_nsca) on the machine that you are generating TCP wrapper alerts from.

Defining The Service

First off you’re going to have to define a service in your object configuration file for the TCP wrapper
alerts. Assuming that the host that the alerts are originating from is called firestorm, a sample service
definition might look something like this:

define service{
 host_name firestorm
 service_description TCP Wrappers
 is_volatile 1
 active_checks_enabled 0
 passive_checks_enabled 1
 max_check_attempts 1
 contact_groups security-admins
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 check_command check_none
 }

Important things to note are the fact that this service has the volatile option enabled. We want this option
enabled because we want a notification to be generated for every alert that comes in. Also of note is the
fact that active checks of the service as disabled, while passive checks are enabled. This means that the
service will never be actively checked - all alert information will have to be sent in passively by the nsca
client on the firestorm host.

Configuring TCP Wrappers

Now you’re going to have to modify the /etc/hosts.deny file on the host called firestorm. In order to have
the TCP wrappers send an alert to the monitoring host whenever a connection attempt is denied, you’ll
have to add a line similiar to the following:

ALL: ALL: RFC931: twist (/usr/local/nagios/libexec/eventhandlers/handle_tcp_wrapper %h %d) &

This line assumes that there is a script called handle_tcp_wrapper in the
/usr/local/nagios/libexec/eventhandlers/ directory on firestorm. The directory and script name can be
changed to whatever you want.

Writing The Script

The last thing you need to do is write the handle_tcp_wrapper script on firestorm that will send the alert
back to the monitoring host. It might look something like this:

#!/bin/sh

/usr/local/nagios/libexec/eventhandlers/submit_check_result firestorm "TCP Wrappers" 2 "Denied $2-$1" > /dev/null 2> /dev/null

167

Notice that the handle_tcp_wrapper script calls the submit_check_result script to actually send the alert back
to the monitoring host. Assuming your monitoring host is called monitor, the submit check_result script
might look like this (you’ll have to modify this to specify the proper location of the send_nsca program
on firestorm):

#!/bin/sh

Arguments
$1 = name of host in service definition
$2 = name/description of service in service definition
$3 = return code
$4 = output

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/nagios/bin/send_nsca monitor -c /usr/local/nagios/etc/send_nsca.cfg

Finishing Up

You’ve now configured everything you need to, so all you have to do is restart the inetd process on
firestorm and restart Nagios on your monitoring server. That’s it! When the TCP wrappers on firestorm
deny a connection attempt, you should be getting alerts in Nagios. The plugin output for the alert will
look something like the following:

Denied sshd2-sdn-ar-002mnminnP321.dialsprint.net

168

Securing Nagios

Introduction

This is intended to be a brief overview of some things you should keep in mind when installing Nagios,
so as to not set it up in an insecure manner. This document is new, so if anyone has additional notes or
comments on securing Nagios, please drop me a note at nagios@nagios.org

Do Not Run Nagios As Root!

Nagios doesn’t need to run as root, so don’t do it. Even if you start Nagios at boot time with an init
script, you can force it to drop privileges after startup and run as another user/group by using the
nagios_user and nagios_group directives in the main config file.

If you need to execute event handlers or plugins which require root access, you might want to try using
sudo.

Enable External Commands Only If Necessary

By default, external commands are disabled. This is done to prevent an admin from setting up Nagios
and unknowingly leaving its command interface open for use by "others".. If you are planning on using
event handlers or issuing commands from the web interface, you will have to enable external
commands. If you aren’t planning on using event handlers or the web interface to issue commands, I
would recommend leaving external commands disabled.

Set Proper Permissions On The External Command File

If you enable external commands, make sure you set proper permissions on the /usr/local/nagios/var/rw
directory. You only want the Nagios user (usually nagios) and the web server user (usually nobody) to
have permissions to write to the command file. If you’ve installed Nagios on a machine that is dedicated
to monitoring and admin tasks and is not used for public accounts, that should be fine.

If you’ve installed it on a public or multi-user machine, allowing the web server user to have write
access to the command file can be a security problem. After all, you don’t want just any user on your
system controlling Nagios through the external command file. In this case, I would suggest only
granting write access on the command file to the nagios user and using something like CGIWrap to run
the CGIs as the nagios user instead of nobody.

Instructions on setting up permissions for the external command file can be found here.

Require Authentication In The CGIs

I would strongly suggest requiring authentication for accessing the CGIs. Once you do that, read the
documentation on the default rights that authenticated contacts have, and only authorize specific
contacts for additional rights as necessary. Instructions on setting up authentication and configuring
authorization rights can be found here. If you disable the CGI authentication features using the
use_authentication directive in the CGI config file, the command CGI will refuse to write any commands
to the external command file. After all, you don’t want the world to be able to control Nagios do you?

Use Full Paths In Command Definitions

When you define commands, make sure you specify the full path to any scripts or binaries you’re
executing.

169

http://www.courtesan.com/sudo/sudo.html
http://cgiwrap.unixtools.org/

Hide Sensitive Information With $USERn$ Macros

The CGIs read the main config file and object config file(s), so you don’t want to keep any sensitive
information (usernames, passwords, etc) in there. If you need to specify a username and/or password in
a command definition use a $USERn$ macro to hide it. $USERn$ macros are defined in one or more
resource files. The CGIs will not attempt to read the contents of resource files, so you can set more
restrictive permissions (600 or 660) on them. See the sample resource.cfg file in the base of the Nagios
distribution for an example of how to define $USERn$ macros.

Strip Dangerous Characters From Macros

Use the illegal_macro_output_chars directive to strip dangerous characters from the $HOSTOUTPUT$,
$SERVICEOUTPUT$, $HOSTPERFDATA$, and $SERVICEPERFDATA$ macros before they’re used in
notifications, etc. Dangerous characters can be anything that might be interpreted by the shell, thereby
opening a security hole. An example of this is the presence of backtick (‘) characters in the
$HOSTOUTPUT$, $SERVICEOUTPUT$, $HOSTPERFDATA$, and/or $SERVICEPERFDATA$ macros,
which could allow an attacker to execute an arbitrary command as the nagios user (one good reason not
to run Nagios as the root user).

170

Tuning Nagios For Maximum Performance

Introduction

So you’ve finally got Nagios up and running and you want to know how you can tweak it a bit... Here
are a few things to look at for optimizing Nagios. Let me know if you think of any others...

Optimization Tips:

1. Use aggregated status updates. Enabling aggregated status updates (with the
aggregate_status_updates option) will greatly reduce the load on your monitoring host because it
won’t be constantly trying to update the status log. This is especially recommended if you are
monitoring a large number of services. The main trade-off with using aggregated status updates is
that changes in the states of hosts and services will not be reflected immediately in the status file.
This may or may not be a big concern for you.

2. Use a ramdisk for holding status data. If you’re using the standard status log and you’re not using
aggregated status updates, consider putting the directory where the status log is stored on a
ramdisk. This will speed things up quite a bit (in both the core program and the CGIs) because it
saves a lot of interrupts and disk thrashing.

3. Check service latencies to determine best value for maximum concurrent checks. Nagios can
restrict the number of maximum concurrently executing service checks to the value you specify
with the max_concurrent_checks option. This is good because it gives you some control over how
much load Nagios will impose on your monitoring host, but it can also slow things down. If you are
seeing high latency values (> 10 or 15 seconds) for the majority of your service checks (via the
extinfo CGI), you are probably starving Nagios of the checks it needs. That’s not Nagios’s fault - its
yours. Under ideal conditions, all service checks would have a latency of 0, meaning they were
executed at the exact time that they were scheduled to be executed. However, it is normal for some
checks to have small latency values. I would recommend taking the minimum number of maximum
concurrent checks reported when running Nagios with the -s command line argument and doubling
it. Keep increasing it until the average check latency for your services is fairly low. More
information on service check scheduling can be found here.

4. Use passive checks when possible. The overhead needed to process the results of passive service
checks is much lower than that of "normal" active checks, so make use of that piece of info if you’re
monitoring a slew of services. It should be noted that passive service checks are only really useful if
you have some external application doing some type of monitoring or reporting, so if you’re having
Nagios do all the work, this won’t help things.

5. Avoid using interpreted plugins. One thing that will significantly reduce the load on your
monitoring host is the use of compiled (C/C++, etc.) plugins rather than interpreted script (Perl, etc)
plugins. While Perl scripts and such are easy to write and work well, the fact that they are
compiled/interpreted at every execution instance can significantly increase the load on your
monitoring host if you have a lot of service checks. If you want to use Perl plugins, consider
compiling them into true executables using perlcc(1) (a utility which is part of the standard Perl
distribution) or compiling Nagios with an embedded Perl interpreter (see below).

6. Use the embedded Perl interpreter. If you’re using a lot of Perl scripts for service checks, etc., you
will probably find that compiling an embedded Perl interpreter into the Nagios binary will speed
things up. In order to compile in the embedded Perl interpreter, you’ll need to supply the
--enable-embedded-perl option to the configure script before you compile Nagios. Also, if you use the
--with-perlcache option, the compiled version of all Perl scripts processed by the embedded
interpreter will be cached for later reuse.

7. Optimize host check commands. If you’re checking host states using the check_ping plugin you’ll
find that host checks will be performed much faster if you break up the checks. Instead of specifying
a max_attempts value of 1 in the host definition and having the check_ping plugin send 10 ICMP

171

packets to the host, it would be much faster to set the max_attempts value to 10 and only send out 1
ICMP packet each time. This is due to the fact that Nagios can often determine the status of a host after
executing the plugin once, so you want to make the first check as fast as possible. This method does have
its pitfalls in some situations (i.e. hosts that are slow to respond may be assumed to be down), but I
you’ll see faster host checks if you use it. Another option would be to use a faster plugin (i.e.
check_fping) as the host_check_command instead of check_ping.

8. Don’t schedule regular host checks. Do NOT schedule regular checks of hosts unless absolutely
necessary. There are not many reasons to do this, as host checks are performed on-demand as needed.
To disable regular checks of a host, set the check_interval directive in the host definition to 0. If you
do need to have regularly scheduled host checks, try to use a longer check interval and make sure your
host checks are optimized (see above).

9. Don’t use agressive host checking. Unless you’re having problems with Nagios recognizing host
recoveries, I would recommend not enabling the use_aggressive_host_checking option. With this
option turned off host checks will execute much faster, resulting in speedier processing of service check
results. However, host recoveries can be missed under certain circumstances when this it turned off. For
example, if a host recovers and all of the services associated with that host stay in non-OK states (and
don’t "wobble" between different non-OK states), Nagios may miss the fact that the host has recovered.
A few people may need to enable this option, but the majority don’t and I would recommend not
using it unless you find it necessary...

10. Increase external command check interval. If you’re processing a lot of external commands (i.e.
passive checks in a distributed setup, you’ll probably want to set the command_check_interval
variable to -1. This will cause Nagios to check for external commands as often as possible. This is
important because most systems have small pipe buffer sizes (i.e. 4KB). If Nagios doesn’t read the data
from the pipe fast enough, applications that write to the external command file (i.e. the NSCA
daemon) will block and wait until there is enough free space in the pipe to write their data.

11. Optimize hardware for maximum performance. Your system configuration and your hardware
setup are going to directly affect how your operating system performs, so they’ll affect how Nagios
performs. The most common hardware optimization you can make is with your hard drives. CPU and
memory speed are obviously factors that affect performance, but disk access is going to be your biggest
bottlenck. Don’t store plugins, the status log, etc on slow drives (i.e. old IDE drives or NFS mounts). If
you’ve got them, use UltraSCSI drives or fast IDE drives. An important note for IDE/Linux users is that
many Linux installations do not attempt to optimize disk access. If you don’t change the disk access
parameters (by using a utility like hdparam), you’ll loose out on a lot of the speedy features of the
new IDE drives.

172

Using The Nagiostats Utility

Introduction

A utility called nagiostats is included in the Nagios distribution. It is compiled and installed along with
the main Nagios daemon.

The nagiostats utility allows you to obtain various information about a running Nagios process. You can
obtain information either in human-readable or MRTG-compatible format.

Usage Information

You can run the nagiostats utility with the --help option to get usage information:

[nagios@lanman ~]# /usr/local/nagios/bin/nagiostats --help

Nagios Stats 2.0a1
Copyright (c) 2003 Ethan Galstad (nagios@nagios.org)
Last Modified: 11-18-2003
License: GPL

Usage: /usr/local/nagios/bin/nagiostats [options]

Startup:
 -V, --version display program version information and exit.
 -L, --license display license information and exit.
 -h, --help display usage information and exit.

Input file:
 -c, --config=FILE specifies location of main Nagios config file.

Output:
 -m, --mrtg display output in MRTG compatible format.
 -d, --data=VARS comma-seperated list of variables to output in MRTG
 (or compatible) format. See possible values below.
 Percentages are rounded, times are in milliseconds.

MRTG DATA VARIABLES (-d option):
 NUMSERVICES total number of services.
 NUMHOSTS total number of services.
 NUMSVCOK number of services OK.
 NUMSVCWARN number of services WARNING.
 NUMSVCUNKN number of services UNKNOWN.
 NUMSVCCRIT number of services CRITICAL.
 NUMSVCPROB number of service problems (WARNING, UNKNOWN or CRITIAL).
 NUMHSTUP number of hosts UP.
 NUMHSTDOWN number of hosts DOWN.
 NUMHSTUNR number of hosts UNREACHABLE.
 NUMHSTPROB number of host problems (DOWN or UNREACHABLE).
 xxxACTSVCLAT MIN/MAX/AVG active service check latency (ms).
 xxxACTSVCEXT MIN/MAX/AVG active service check execution time (ms).
 xxxACTSVCPSC MIN/MAX/AVG active service check % state change.
 xxxPSVSVCPSC MIN/MAX/AVG passive service check % state change.
 xxxSVCPSC MIN/MAX/AVG service check % state change.
 xxxACTHSTLAT MIN/MAX/AVG active host check latency (ms).
 xxxACTHSTEXT MIN/MAX/AVG active host check execution time (ms).
 xxxACTHSTPSC MIN/MAX/AVG active host check % state change.
 xxxPSVHSTPSC MIN/MAX/AVG passive host check % state change.
 xxxHSTPSC MIN/MAX/AVG host check % state change.
 NUMACTHSTCHKxM number of active host checks in last 1/5/15/60 minutes.
 NUMPSVHSTCHKxM number of passive host checks in last 1/5/15/60 minutes.
 NUMACTSVCCHKxM number of active service checks in last 1/5/15/60 minutes.

173

 NUMPSVSVCCHKxM number of passive service checks in last 1/5/15/60 minutes.

 Note: Replace x’s in MRTG variable names with ’MIN’, ’MAX’, ’AVG’, or the
 the appropriate number (i.e. ’1’, ’5’, ’15’, or ’60’).

[nagios@lanman ~]#

Human-Readable Output

For normal operation, run the nagiostats utility, specifying only the config file location as an argument, as
follows:

[nagios@lanman ~]# /usr/local/nagios/bin/nagiostats -c /usr/local/nagios/etc/nagios.cfg

Nagios Stats 2.0a1
Copyright (c) 2003 Ethan Galstad (nagios@nagios.org)
Last Modified: 11-18-2003
License: GPL

CURRENT STATUS DATA
--
Status File: /usr/local/nagios/var/status.dat
Status File Age: 0d 0h 0m 13s
Status File Version: 2.0-very-pre-alpha

Program Running Time: 14d 17h 19m 13s

Total Services: 32
Services Checked: 32
Services Scheduled: 29
Active Service Checks: 29
Passive Service Checks: 3
Total Service State Change: 0.000 / 65.530 / 2.930 %
Active Service Latency: 0.048 / 14.837 / 1.035 %
Active Service Execution Time: 0.076 / 60.006 / 4.301 sec
Active Service State Change: 0.000 / 10.530 / 0.762 %
Active Services Last 1/5/15/60 min: 1 / 13 / 29 / 29
Passive Service State Change: 0.000 / 65.530 / 23.883 %
Passive Services Last 1/5/15/60 min: 0 / 0 / 0 / 0
Services Ok/Warn/Unk/Crit: 23 / 5 / 1 / 3
Services Flapping: 1
Services In Downtime: 0

Total Hosts: 9
Hosts Checked: 9
Hosts Scheduled: 9
Active Host Checks: 9
Passive Host Checks: 0
Total Host State Change: 0.000 / 28.420 / 4.034 %
Active Host Latency: 0.000 / 15.741 / 5.443 %
Active Host Execution Time: 1.022 / 10.032 / 3.047 sec
Active Host State Change: 0.000 / 28.420 / 4.034 %
Active Hosts Last 1/5/15/60 min: 0 / 8 / 9 / 9
Passive Host State Change: 0.000 / 0.000 / 0.000 %
Passive Hosts Last 1/5/15/60 min: 0 / 0 / 0 / 0
Hosts Up/Down/Unreach: 7 / 1 / 1
Hosts Flapping: 0
Hosts In Downtime: 0

[nagios@lanman ~]#

174

As you can see, the utility displays a number of different metrics pertaining to the Nagios process.
Metrics which have multiple values are (unless otherwise specified) min, max and average values for
that partciular metric.

MRTG Integration

You can use the nagiostats utility to display various Nagios metrics using MRTG (or other compatible
program). To do so, run the nagiostats utility using the --mrtg and --data arguments. The --data argument
is used to specify what statistics should be graphed. Possible values for the --data argument can be
found by running the nagiostats utility with the --help option.

Here’s an MRTG config file snippet for using the nagiostats utility for graphing average service latency
and execution time.

Service Latency and Execution Time
Target[nagios-a]: ‘/usr/local/nagios/bin/nagiostats --mrtg --data=AVGACTSVCLAT,AVGACTSVCEXT‘
MaxBytes[nagios-a]: 100000
Title[nagios-a]: Average Service Check Latency and Execution Time
PageTop[nagios-a]: <H1>Average Service Check Latency and Execution Time</H1>
Options[nagios-a]: growright,gauge,nopercent
YLegend[nagios-a]: Milliseconds
ShortLegend[nagios-a]:
LegendI[nagios-a]: Latency:
LegendO[nagios-a]: Execution Time:
Legend1[nagios-a]: Latency
Legend2[nagios-a]: Execution Time
Legend3[nagios-a]: Maximal 5 Minute Latency
Legend4[nagios-a]: Maximal 5 Minute Execution Time

The MRTG graphs generated from the above config snippet look like this:

175

176

Using Macros In Commands

Macros

One of the features available in Nagios is the ability to use macros in command defintions. Immediately
prior to the execution of a command, Nagios will replace all macros in the command with their
corresponding values. This allows you to define a few generic commands to handle all your needs.

Macro Substitution

Before any commands (host and service checks, notifications, event handlers, etc.) are executed, Nagios
will replace any macros it finds in the command definition with their corresponding values.

When you use host and service macros in command definitions, they refer to values for the host or
service for which the command is being run. Let’s try an example. Assuming we are using a host
definition and a check_ping command defined like this:

define host{
 host_name linuxbox
 address 192.168.1.2
 check_command check_ping
 ...
 }

define command{
 command_name check_ping
 command_line /usr/local/nagios/libexec/check_ping -H $HOSTADDRESS$ -w 100.0,90% -c 200.0,60%
 }

the expanded/final command line to be executed for the host’s check command would look like this:

 /usr/local/nagios/libexec/check_ping -H 192.168.1.2 -w 100.0,90% -c 200.0,60%

You can pass arguments to commands as well, which is quite handy if you’d like to keep your command
definitions rather generic. Arguments are specified in the object (i.e. host or service) definition, by
seperating them from the command name with exclamation points (!) like so:

define service{
 host_name linuxbox
 service_description PING
 ...
 check_command check_ping!200.0,80%!400.0,40%
 ...
 }

In the example above, the service check command has two arguments (which can be referenced with
$ARGn$ macros). The $ARG1$ macro will be "200.0,80%" and $ARG2$ will be "400.0,40%" (both without
quotes). Assuming we are using the host definition given earlier and a check_ping command defined like
this:

define command{
 command_name check_ping
 command_line /usr/local/nagios/libexec/check_ping -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$
 }

the expanded/final command line to be executed for the service’s check command would look like this:

177

 /usr/local/nagios/libexec/check_ping -H 192.168.1.2 -w 200.0,80% -c 400.0,40%

On-Demand Macros

Normally when you use host and service macros in command definitions, they refer to values for the
host or service for which the command is being run. For instance, if a host check command is being
executed for a host named "linuxbox", all the host macros listed in the table below will refer to values for
that host ("linuxbox").

If you would like to reference values for another host or service in a command (for which the command
is not being run), you can use what are called "on-demand" macros. On-demand macros look like
normal macros, except for the fact that they contain an identifier for the host or service from which they
should get their value. Here’s the basic format for on-demand macros:

$HOSTMACRO:host_name$

$SERVICEMACRO:host_name:service_description$

Note that the macro name is seperated from the host or service identifier by a colon (:). For on-demand
service macros, the service identifier consists of both a host name and a service description - these are
seperated by a colon (:) as well.

Examples of on-demand host and service macros follow:

$HOSTDOWNTIME:myhost$
$SERVICESTATEID:novellserver:DS Database$

Macro Cleansing

Some macros are stripped of potentially dangerous shell metacharacters before being substituted into
commands to be executed. Which characters are stripped from the macros depends on the setting of the
illegal_macro_output_chars directive. The following macros are stripped of potentially dangerous
characters:

1. $HOSTOUTPUT$

2. $HOSTPERFDATA$

3. $HOSTACKAUTHOR$

4. $HOSTACKCOMMENT$

5. $SERVICEOUTPUT$

6. $SERVICEPERFDATA$

7. $SERVICEACKAUTHOR$

8. $SERVICEACKCOMMENT$

Macros as Environment Variables

Starting with Nagios 2.0, most macros have been made available as environment variables. This means
that scripts that are run from Nagios (i.e. service and host check commands, notification commands, etc.)
can reference these macros directly as standard environment variables. For purposes of security and
sanity, $USERn$ and "on-demand" host and service macros are not made available as environment
variables. Environment variables that contain macros are named the same as their corresponding macro
names (listed below), with "NAGIOS_" prepended to their names. For example, the $HOSTNAME$
macro would be available as an environment variable named "NAGIOS_HOSTNAME".

Macro Validity

178

Although macros can be used in all commands you define, not all macros may be "valid" in a particular
type of command. For example, some macros may only be valid during service notification commands,
whereas other may only be valid during host check commands. There are ten types of commands that
Nagios recognizes and treats differently. They are as follows:

1. Service checks

2. Service notifications

3. Host checks

4. Host notifications

5. Service event handlers and/or a global service event handler

6. Host event handlers and/or a global host event handler

7. OCSP command

8. OCHP command

9. Service performance data commands

10. Host performance data commands

The tables below list all macros currently available in Nagios, along with a brief description of each and
the types of commands in which they are valid. If a macro is used in a command in which it is invalid, it
is replaced with an empty string. It should be noted that macros consist of all uppercase characters and
are enclosed in $ characters.

Macro Availability Chart

Legend:

No The macro is not available

Yes The macro is available

Macro Name
Service
Checks

Service
Notifications

Host
Checks

Host
Notifications

Service
Event

Handlers,
Global
Service
Event

Handler,
OCSP

Command

Host
Event

Handlers,
Global
Host
Event

Handler,
OCHP

Command

Service
Performance

Data
Commands

Host
Performance

Data
Commands

Host Macros: 3

$HOSTNAME$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTALIAS$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTADDRESS$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTSTATE$ Yes Yes Yes 1 Yes Yes Yes Yes Yes

$HOSTSTATEID$ Yes Yes Yes 1 Yes Yes Yes Yes Yes

$HOSTSTATETYPE$ Yes Yes Yes 1 Yes Yes Yes Yes Yes

$HOSTATTEMPT$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTLATENCY$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTEXECUTIONTIME$ Yes Yes Yes 1 Yes Yes Yes Yes Yes

$HOSTDURATION$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTDURATIONSEC$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTDOWNTIME$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTPERCENTCHANGE$ Yes Yes Yes Yes Yes Yes Yes Yes

179

$HOSTGROUPNAME$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTGROUPALIAS$ Yes Yes Yes Yes Yes Yes Yes Yes

$LASTHOSTCHECK$ Yes Yes Yes Yes Yes Yes Yes Yes

$LASTHOSTSTATECHANGE$ Yes Yes Yes Yes Yes Yes Yes Yes

$LASTHOSTUP$ Yes Yes Yes Yes Yes Yes Yes Yes

$LASTHOSTDOWN$ Yes Yes Yes Yes Yes Yes Yes Yes

$LASTHOSTUNREACHABLE$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTOUTPUT$ Yes Yes Yes 1 Yes Yes Yes Yes Yes

$HOSTPERFDATA$ Yes Yes Yes 1 Yes Yes Yes Yes Yes

$HOSTCHECKCOMMAND$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTACKAUTHOR$ No No No Yes No No No No

$HOSTACKCOMMENT$ No No No Yes No No No No

$HOSTACTIONURL$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTNOTESURL$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTNOTES$ Yes Yes Yes Yes Yes Yes Yes Yes

Service Macros:

$SERVICEDESC$ Yes Yes No No Yes No Yes No

$SERVICESTATE$ Yes 2 Yes No No Yes No Yes No

$SERVICESTATEID$ Yes 2 Yes No No Yes No Yes No

$SERVICESTATETYPE$ Yes Yes No No Yes No Yes No

$SERVICEATTEMPT$ Yes Yes No No Yes No Yes No

$SERVICELATENCY$ Yes Yes No No Yes No Yes No

$SERVICEEXECUTIONTIME$ Yes 2 Yes No No Yes No Yes No

$SERVICEDURATION$ Yes Yes No No Yes No Yes No

$SERVICEDURATIONSEC$ Yes Yes No No Yes No Yes No

$SERVICEDOWNTIME$ Yes Yes No No Yes No Yes No

$SERVICEPERCENTCHANGE$ Yes Yes No No Yes No Yes No

$SERVICEGROUPNAME$ Yes Yes No No Yes No Yes No

$SERVICEGROUPALIAS$ Yes Yes No No Yes No Yes No

$LASTSERVICECHECK$ Yes Yes No No Yes No Yes No

$LASTSERVICESTATECHANGE$ Yes Yes No No Yes No Yes No

$LASTSERVICEOK$ Yes Yes No No Yes No Yes No

$LASTSERVICEWARNING$ Yes Yes No No Yes No Yes No

$LASTSERVICEUNKNOWN$ Yes Yes No No Yes No Yes No

$LASTSERVICECRITICAL$ Yes Yes No No Yes No Yes No

$SERVICEOUTPUT$ Yes 2 Yes No No Yes No Yes No

$SERVICEPERFDATA$ Yes 2 Yes No No Yes No Yes No

$SERVICECHECKCOMMAND$ Yes Yes No No Yes No Yes No

$SERVICEACKAUTHOR$ No Yes No No No No No No

$SERVICEACKCOMMENT$ No Yes No No No No No No

$SERVICEACTIONURL$ Yes Yes No No Yes No Yes No

$SERVICENOTESURL$ Yes Yes No No Yes No Yes No

$SERVICENOTES$ Yes Yes No No Yes No Yes No

Summary Macros:

$TOTALHOSTSUP$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

180

$TOTALHOSTSDOWN$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALHOSTSUNREACHABLE$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALHOSTSDOWNUNHANDLED$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALHOSTSUNREACHABLEUNHANDLED$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALHOSTPROBLEMS$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALHOSTPROBLEMSUNHANDLED$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICESOK$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICESWARNING$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICESCRITICAL$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICESUNKNOWN$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICESWARNINGUNHANDLED$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICESCRITICALUNHANDLED$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICESUNKNOWNUNHANDLED$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICEPROBLEMS$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

$TOTALSERVICEPROBLEMSUNHANDLED$ Yes Yes 4 Yes Yes 4 Yes Yes Yes Yes

Notification Macros:

$NOTIFICATIONTYPE$ No Yes No Yes No No No No

$NOTIFICATIONNUMBER$ No Yes No Yes No No No No

Contact Macros:

$CONTACTNAME$ No Yes No Yes No No No No

$CONTACTALIAS$ No Yes No Yes No No No No

$CONTACTEMAIL$ No Yes No Yes No No No No

$CONTACTPAGER$ No Yes No Yes No No No No

$CONTACTADDRESSn$ No Yes No Yes No No No No

Date Macros:

$LONGDATETIME$ Yes Yes Yes Yes Yes Yes Yes Yes

$SHORTDATETIME$ Yes Yes Yes Yes Yes Yes Yes Yes

$DATE$ Yes Yes Yes Yes Yes Yes Yes Yes

$TIME$ Yes Yes Yes Yes Yes Yes Yes Yes

$TIMET$ Yes Yes Yes Yes Yes Yes Yes Yes

File Macros:

$MAINCONFIGFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$STATUSDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$COMMENTDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$DOWNTIMEDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$RETENTIONDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$OBJECTCACHEFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$TEMPFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$LOGFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$RESOURCEFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$COMMANDFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTPERFDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

$SERVICEPERFDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes

Misc Macros:

181

$PROCESSSTARTTIME$ Yes Yes Yes Yes Yes Yes Yes Yes

$ADMINEMAIL$ Yes Yes Yes Yes Yes Yes Yes Yes

$ADMINPAGER$ Yes Yes Yes Yes Yes Yes Yes Yes

$ARGn$ Yes Yes Yes Yes Yes Yes Yes Yes

$USERn$ Yes Yes Yes Yes Yes Yes Yes Yes

Macro Descriptions

Host Macros: 3

$HOSTNAME$

Short name for the host (i.e.
"biglinuxbox"). This value is taken
from the host_name directive in the
host definition.

$HOSTALIAS$
Long name/description for the
host. This value is taken from the
alias directive in the host definition.

$HOSTADDRESS$
Address of the host. This value is
taken from the address directive in
the host definition.

$HOSTSTATE$
A string indicating the current state
of the host ("UP", "DOWN", or
"UNREACHABLE").

$HOSTSTATEID$
A number that corresponds to the
current state of the host: 0=UP,
1=DOWN, 2=UNREACHABLE.

$HOSTSTATETYPE$

A string indicating the state type
for the current host check ("HARD"
or "SOFT"). Soft states occur when
host checks return a non-OK
(non-UP) state and are in the
process of being retried. Hard
states result when host checks have
been checked a specified maximum
number of times.

$HOSTATTEMPT$

The number of the current host
check retry. For instance, if this is
the second time that the host is
being rechecked, this will be the
number two. Current attempt
number is really only useful when
writing host event handlers for
"soft" states that take a specific
action based on the host retry
number.

182

$HOSTLATENCY$

A (floating point) number
indicating the number of seconds
that a scheduled host check lagged
behind its scheduled check time.
For instance, if a check was
scheduled for 03:14:15 and it didn’t
get executed until 03:14:17, there
would be a check latency of 2.0
seconds. On-demand host checks
have a latency of zero seconds.

$HOSTEXECUTIONTIME$

A (floating point) number
indicating the number of seconds
that the host check took to execute
(i.e. the amount of time the check
was executing).

$HOSTDURATION$

A string indicating the amount of
time that the host has spent in its
current state. Format is "XXh YYm
ZZs", indicating hours, minutes
and seconds.

$HOSTDURATIONSEC$
A number indicating the number of
seconds that the host has spent in
its current state.

$HOSTDOWNTIME$

A number indicating the current
"downtime depth" for the host. If
this host is currently in a period of
scheduled downtime, the value
will be greater than zero. If the host
is not currently in a period of
downtime, this value will be zero.

$HOSTPERCENTCHANGE$

A (floating point) number
indicating the percent state change
the host has undergone. Percent
state change is used by the flap
detection algorithm.

$HOSTGROUPNAME$

The short name of the hostgroup
that this host belongs to. This value
is taken from the hostgroup_name
directive in the hostgroup
definition. If the host belongs to
more than one hostgroup this
macro will contain the name of just
one of them.

183

$HOSTGROUPALIAS$

The longer name/alias of the
hostgroup that this host belongs to.
This value is taken from the alias
directive in the hostgroup
definition. If the host belongs to
more than one hostgroup, this
macro contains the alias of just one
of them.

$LASTHOSTCHECK$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
a check of the host was last
performed.

$LASTHOSTSTATECHANGE$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time the host
last changed state.

$LASTHOSTUP$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
the host was last detected as being
in an UP state.

$LASTHOSTDOWN$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
the host was last detected as being
in a DOWN state.

$LASTHOSTUNREACHABLE$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
the host was last detected as being
in an UNREACHABLE state.

$HOSTOUTPUT$
The text output from the last host
check (i.e. "Ping OK").

$HOSTPERFDATA$

This macro contains any
performance data that may have
been returned by the last host
check.

$HOSTCHECKCOMMAND$

This macro contains the name of
the command (along with any
arguments passed to it) used to
perform the host check.

184

$HOSTACKAUTHOR$

A string containing the name of the
user who acknowledged the host
problem. This macro is only valid
in notifications where the
$NOTIFICATIONTYPE$ macro is
set to "ACKNOWLEDGEMENT".

$HOSTACKCOMMENT$

A string containing the
acknowledgement comment that
was entered by the user who
acknowledged the host problem.
This macro is only valid in
notifications where the
$NOTIFICATIONTYPE$ macro is
set to "ACKNOWLEDGEMENT".

$HOSTACTIONURL$

Action URL for the host. This value
is taken from the action_url
directive in the extended host
information definition.

$HOSTNOTESURL$

Notes URL for the host. This value
is taken from the notes_url directive
in the extended host information
definition.

$HOSTNOTES$

Notes for the host. This value is
taken from the notes directive in the
extended host information
definition.

Service Macros:

$SERVICEDESC$

The long name/description of the
service (i.e. "Main Website"). This
value is taken from the description
directive of the service definition.

$SERVICESTATE$
A string indicating the current state
of the service ("OK", "WARNING",
"UNKNOWN", or "CRITICAL").

$SERVICESTATEID$

A number that corresponds to the
current state of the service: 0=OK,
1=WARNING, 2=CRITICAL,
3=UNKNOWN.

185

$SERVICESTATETYPE$

A string indicating the state type
for the current service check
("HARD" or "SOFT"). Soft states
occur when service checks return a
non-OK state and are in the process
of being retried. Hard states result
when service checks have been
checked a specified maximum
number of times.

$SERVICEATTEMPT$

The number of the current service
check retry. For instance, if this is
the second time that the service is
being rechecked, this will be the
number two. Current attempt
number is really only useful when
writing service event handlers for
"soft" states that take a specific
action based on the service retry
number.

$SERVICELATENCY$

A (floating point) number
indicating the number of seconds
that a scheduled service check
lagged behind its scheduled check
time. For instance, if a check was
scheduled for 03:14:15 and it didn’t
get executed until 03:14:17, there
would be a check latency of 2.0
seconds.

$SERVICEEXECUTIONTIME$

A (floating point) number
indicating the number of seconds
that the service check took to
execute (i.e. the amount of time the
check was executing).

$SERVICEDURATION$

A string indicating the amount of
time that the service has spent in its
current state. Format is "XXh YYm
ZZs", indicating hours, minutes
and seconds.

$SERVICEDURATIONSEC$
A number indicating the number of
seconds that the service has spent
in its current state.

186

$SERVICEDOWNTIME$

A number indicating the current
"downtime depth" for the service. If
this service is currently in a period
of scheduled downtime, the value
will be greater than zero. If the
service is not currently in a period
of downtime, this value will be
zero.

$SERVICEPERCENTCHANGE$

A (floating point) number
indicating the percent state change
the service has undergone. Percent
state change is used by the flap
detection algorithm.

$SERVICEGROUPNAME$

The short name of the servicegroup
that this service belongs to. This
value is taken from the
servicegroup_name directive in the
servicegroup definition. If the
service belongs to more than one
servicegroup this macro will
contain the name of just one of
them.

$SERVICEGROUPALIAS$

The long name/alias of the
servicegroup that this service
belongs to. This value is taken from
the alias directive in the
servicegroup definition. If the
service belongs to more than one
servicegroup this macro will
contain the name of just one of
them.

$LASTSERVICECHECK$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
a check of the service was last
performed.

$LASTSERVICESTATECHANGE$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time the
service last changed state.

$LASTSERVICEOK$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
the service was last detected as
being in an OK state.

187

$LASTSERVICEWARNING$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
the service was last detected as
being in a WARNING state.

$LASTSERVICEUNKNOWN$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
the service was last detected as
being in an UNKNOWN state.

$LASTSERVICECRITICAL$

This is a timestamp in time_t
format (seconds since the UNIX
epoch) indicating the time at which
the service was last detected as
being in a CRITICAL state.

$SERVICEOUTPUT$
The text output from the last
service check (i.e. "Ping OK").

$SERVICEPERFDATA$

This macro contains any
performance data that may have
been returned by the last service
check.

$SERVICECHECKCOMMAND$

This macro contains the name of
the command (along with any
arguments passed to it) used to
perform the service check.

$SERVICEACKAUTHOR$

A string containing the name of the
user who acknowledged the
service problem. This macro is only
valid in notifications where the
$NOTIFICATIONTYPE$ macro is
set to "ACKNOWLEDGEMENT".

$SERVICEACKCOMMENT$

A string containing the
acknowledgement comment that
was entered by the user who
acknowledged the service problem.
This macro is only valid in
notifications where the
$NOTIFICATIONTYPE$ macro is
set to "ACKNOWLEDGEMENT".

$SERVICEACTIONURL$

Action URL for the service. This
value is taken from the action_url
directive in the extended service
information definition.

188

$SERVICENOTESURL$

Notes URL for the service. This
value is taken from the notes_url
directive in the extended service
information definition.

$SERVICENOTES$

Notes for the service. This value is
taken from the notes directive in the
extended service information
definition.

Notification Macros:

$NOTIFICATIONTYPE$

A string identifying the type of
notification that is being sent
("PROBLEM", "RECOVERY",
"ACKNOWLEDGEMENT",
"FLAPPINGSTART" or
"FLAPPINGSTOP").

$NOTIFICATIONNUMBER$

The current notification number for
the service or host. The notification
number increases by one (1) each
time a new notification is sent out
for a host or service (except for
acknowledgements). The
notification number is reset to 0
when the host or service recovers
(after the recovery notification has
gone out). Acknowledgements do
not cause the notification number
to increase.

SUMMARY Macros:

$TOTALHOSTSUP$
This macro reflects the total
number of hosts that are currently
in an UP state.

$TOTALHOSTSDOWN$
This macro reflects the total
number of hosts that are currently
in a DOWN state.

$TOTALHOSTSUNREACHABLE$
This macro reflects the total
number of hosts that are currently
in an UNREACHABLE state.

$TOTALHOSTSDOWNUNHANDLED$

This macro reflects the total
number of hosts that are currently
in a DOWN state that are not
currently being "handled".
Unhandled host problems are those
that are not acknowledged, are not
currently in scheduled downtime,
and for which checks are currently
enabled.

189

$TOTALHOSTSUNREACHABLEUNHANDLED$

This macro reflects the total
number of hosts that are currently
in an UNREACHABLE state that
are not currently being "handled".
Unhandled host problems are those
that are not acknowledged, are not
currently in scheduled downtime,
and for which checks are currently
enabled.

$TOTALHOSTPROBLEMS$

This macro reflects the total
number of hosts that are currently
either in a DOWN or an
UNREACHABLE state.

$TOTALHOSTPROBLEMSUNHANDLED$

This macro reflects the total
number of hosts that are currently
either in a DOWN or an
UNREACHABLE state that are not
currently being "handled".
Unhandled host problems are those
that are not acknowledged, are not
currently in scheduled downtime,
and for which checks are currently
enabled.

$TOTALSERVICESOK$
This macro reflects the total
number of services that are
currently in an OK state.

$TOTALSERVICESWARNING$
This macro reflects the total
number of services that are
currently in a WARNING state.

$TOTALSERVICESCRITICAL$
This macro reflects the total
number of services that are
currently in a CRITICAL state.

$TOTALSERVICESUNKNOWN$
This macro reflects the total
number of services that are
currently in an UNKNOWN state.

$TOTALSERVICESWARNINGUNHANDLED$

This macro reflects the total
number of services that are
currently in a WARNING state that
are not currently being "handled".
Unhandled services problems are
those that are not acknowledged,
are not currently in scheduled
downtime, and for which checks
are currently enabled.

190

$TOTALSERVICESCRITICALUNHANDLED$

This macro reflects the total
number of services that are
currently in a CRITICAL state that
are not currently being "handled".
Unhandled services problems are
those that are not acknowledged,
are not currently in scheduled
downtime, and for which checks
are currently enabled.

$TOTALSERVICESUNKNOWNUNHANDLED$

This macro reflects the total
number of services that are
currently in an UNKNOWN state
that are not currently being
"handled". Unhandled services
problems are those that are not
acknowledged, are not currently in
scheduled downtime, and for
which checks are currently
enabled.

$TOTALSERVICEPROBLEMS$

This macro reflects the total
number of services that are
currently either in a WARNING,
CRITICAL, or UNKNOWN state.

$TOTALSERVICEPROBLEMSUNHANDLED$

This macro reflects the total
number of services that are
currently either in a WARNING,
CRITICAL, or UNKNOWN state
that are not currently being
"handled". Unhandled services
problems are those that are not
acknowledged, are not currently in
scheduled downtime, and for
which checks are currently
enabled.

Contact Macros:

$CONTACTNAME$

Short name for the contact (i.e.
"jdoe") that is being notified of a
host or service problem. This value
is taken from the contact_name
directive in the contact definition.

$CONTACTALIAS$

Long name/description for the
contact (i.e. "John Doe") being
notified. This value is taken from
the alias directive in the contact
definition.

191

$CONTACTEMAIL$

Email address of the contact being
notified. This value is taken from
the email directive in the contact
definition.

$CONTACTPAGER$

Pager number/address of the
contact being notified. This value is
taken from the pager directive in
the contact definition.

$CONTACTADDRESSn$

Address of the contact being
notified. Each contact can have six
different addresses (in addition to
email address and pager number).
The macros for these addresses are
$CONTACTADDRESS1$ -
$CONTACTADDRESS6$. This
value is taken from the addressx
directive in the contact definition.

Date Macros:

$LONGDATETIME$

Current date/time stamp (i.e. Fri
Oct 13 00:30:28 CDT 2000). Format
of date is determined by
date_format directive.

$SHORTDATETIME$

Current date/time stamp (i.e.
10-13-2000 00:30:28). Format of date
is determined by date_format
directive.

$DATE$
Date stamp (i.e. 10-13-2000).
Format of date is determined by
date_format directive.

$TIME$ Current time stamp (i.e. 00:30:28).

$TIMET$
Current time stamp in time_t
format (seconds since the UNIX
epoch).

File Macros:

$MAINCONFIGFILE$ The location of the main config file.

$STATUSDATAFILE$ The location of the status data file.

$COMMENTDATAFILE$
The location of the comment data
file.

$DOWNTIMEDATAFILE$
The location of the downtime data
file.

$RETENTIONDATAFILE$
The location of the retention data
file.

192

$OBJECTCACHEFILE$ The location of the object cache file.

$TEMPFILE$ The location of the temp file.

$LOGFILE$ The location of the log file.

$RESOURCEFILE$ The location of the resource file.

$COMMANDFILE$ The location of the command file.

$HOSTPERFDATAFILE$
The location of the host
performance data file (if defined).

$SERVICEPERFDATAFILE$
The location of the service
performance data file (if defined).

Misc Macros:

$PROCESSSTARTTIME$

Time stamp in time_t format
(seconds since the UNIX epoch)
indicating when the Nagios process
was last (re)started. You can
determine the number of seconds
that Nagios has been running
(since it was last restarted) by
subtracting
$PROCESSSTARTTIME$ from
$TIMET$.

$ADMINEMAIL$
Global administrative email
address. This value is taken from
the admin_email directive.

$ADMINPAGER$

Global administrative pager
number/address. This value is
taken from the admin_pager
directive.

$ARGn$

The nth argument passed to the
command (notification, event
handler, service check, etc.). Nagios
supports up to 32 argument macros
($ARG1$ through $ARG32$).

$USERn$

The nth user-definable macro. User
macros can be defined in one or
more resource files. Nagios
supports up to 32 user macros
($USER1$ through $USER32$).

Notes

1 These macros are not valid for the host they are associated with when that host is being checked (i.e.
they make no sense, as they haven’t been determined yet).

193

2 These macros are not valid for the service they are associated with when that service is being checked
(i.e. they make no sense, as they haven’t been determined yet).

3 When host macros are used in service-related commands (i.e. service notifications, event handlers, etc)
they refer to they host that they service is associated with.

4 When host and service summary macros are used in notification commands, the totals are filtered to
reflect only those hosts and services for which the contact is authorized (i.e. hosts and services they are
configured to receive notifications for).

194

Information On The CGIs

Introduction

The various CGIs distributed with Nagios are described here, along with the authorization requirements
for accessing and using each CGI. By default the CGIs require that you have authenticated to the web
server and are authorized to view any information you are requesting. For more information on
configuring your web server and CGI configuration file to allow for this, read the sections on setting up
the web interface and CGI authorization.

Index

Status CGI
Status map CGI
WAP interface CGI
Status world CGI (VRML)
Tactical overview CGI
Network outages CGI
Configuration CGI
Command CGI
Extended information CGI
Event log CGI
Alert history CGI
Notifications CGI
Trends CGI
Availability reporting CGI
Alert histogram CGI
Alert summary CGI

Status CGI

File Name: status.cgi

195

Description:
This is the most important CGI included with Nagios. It allows you to view the current status of all
hosts and services that are being monitored. The status CGI can produce two main types of output - a
status overview of all host groups (or a particular host group) and a detailed view of all services (or
those associated with a particular host). Pretty icons can be associated with hosts by defining
extended host and service information entries.

Authorization Requirements:

If you are authorized for all hosts you can view all hosts and all services.

If you are authorized for all services you can view all services.

If you are an authenticated contact you can view all hosts and services for which you are a contact.

Status Map CGI

File Name: statusmap.cgi

Description:
This CGI creates a map of all hosts that you have defined on your network. The CGI uses Thomas
Boutell’s gd library (version 1.6.3 or higher) to create a PNG image of your network layout. The
coordinates used when drawing each host (along with the optional pretty icons) are taken from
extended host information definitions. If you’d prefer to let the CGI automatically generate drawing
coordinates for you, use the default_statusmap_layout directive to specify a layout algorithm that
should be used.

Authorization Requirements:

If you are authorized for all hosts you can view all hosts.

If you are an authenticated contact you can view hosts for which you are a contact.

Note: Users who are not authorized to view specific hosts will see unknown nodes in those positions. I
realize that they really shouldn’t see anything there, but it doesn’t make sense to even generate the
map if you can’t see all the host dependencies...

WAP Interface CGI

196

http://www.boutell.com/gd

File Name: statuswml.cgi

Description:
This CGI serves as a WAP interface to network status information. If you have a WAP-enable device
(i.e. an Internet-ready cellphone), you can view status information while you’re on the go. Different
status views include hostgroup summary, hostgroup overview, host detail, service detail, all
problems, and unhandled problems. In addition to viewing status information, you can also disable
notifications and checks and acknowledge problems from your cellphone. Pretty cool, huh?

Authorization Requirements:

If you are authorized for system information you can view Nagios process information.

If you are authorized for all hosts you can view status data for all hosts and services.

If you are authorized for all services you can view status data for all services.

If you are an authenticated contact you can view status data for all hosts and services for which
you are a contact.

Status World CGI (VRML)

File Name: statuswrl.cgi

197

Description:
This CGI creates a 3-D VRML model of all hosts that you have defined on your network. Coordinates
used when drawing the hosts (as well as pretty texture maps) are defined using extended host
information definitions. If you’d prefer to let the CGI automatically generate drawing coordinates for
you, use the default_statuswrl_layout directive to specify a layout algorithm that should be used.
You’ll need a VRML browser (like Cortona, Cosmo Player or WorldView) installed on your system
before you can actually view the generated model.

Authorization Requirements:

If you are authorized for all hosts you can view all hosts.

If you are an authenticated contact you can view hosts for which you are a contact.

Note: Users who are not authorized to view specific hosts will see unknown nodes in those positions. I
realize that they really shouldn’t see anything there, but it doesn’t make sense to even generate the
map if you can’t see all the host dependencies...

Tactical Overview CGI

File Name: tac.cgi

Description:
This CGI is designed to server as a "birds-eye view" of all network monitoring activity. It allows you
to quickly see network outages, host status, and service status. It distinguishes between problems
that have been "handled" in some way (i.e. been acknowledged, had notifications disabled, etc.) and
those which have not been handled, and thus need attention. Very useful if you’ve got a lot of
hosts/services you’re monitoring and you need to keep a single screen up to alert you of problems.

Authorization Requirements:

If you are authorized for all hosts you can view all hosts and all services.

If you are authorized for all services you can view all services.

If you are an authenticated contact you can view all hosts and services for which you are a contact.

Network Outages CGI

198

http://www.parallelgraphics.com/cortona/
http://www.cosmosoftware.com/
http://www.intervista.com/

File Name: outages.cgi

Description:
This CGI will produce a listing of "problem" hosts on your network that are causing network outages.
This can be particularly useful if you have a large network and want to quickly identify the source of
the problem. Hosts are sorted based on the severity of the outage they are causing. More information
on how the network outage CGI works can be found here.

Authorization Requirements:

If you are authorized for all hosts you can view all hosts.

If you are an authenticated contact you can view hosts for which you are a contact.

Configuration CGI

File Name: config.cgi

Description:
This CGI allows you to view objects (i.e. hosts, host groups, contacts, contact groups, time periods,
services, etc.) that you have defined in your object configuration file(s).

Authorization Requirements:

You must be authorized for configuration information in order to any kind of configuration
information.

Command CGI

199

File Name: cmd.cgi

Description:
This CGI allows you to send commands to the Nagios process. Although this CGI has several
arguments, you would be better to leave them alone. Most will change between different revisions of
Nagios. Use the extended information CGI as a starting point for issuing commands.

Authorization Requirements:

You must be authorized for system commands in order to issue commands that affect the Nagios
process (restarts, shutdowns, mode changes, etc.).

If you are authorized for all host commands you can issue commands for all hosts and services.

If you are authorized for all service commands you can issue commands for all services.

If you are an authenticated contact you can issue commands for all hosts and services for which
you are a contact.

Notes:

If you have chosen not to use authentication with the CGIs, this CGI will not allow anyone to
issue commands to Nagios. This is done for your own protection. I would suggest removing this
CGI altogether if you decide not to use authentication with the CGIs.

Extended Information CGI

File Name: extinfo.cgi

200

Description:
This CGI allows you to view Nagios process information, host and service state statistics, host and
service comments, and more. It also serves as a launching point for sending commands to Nagios via
the command CGI. Although this CGI has several arguments, you would be better to leave them
alone - they are likely to change between different releases of Nagios. You can access this CGI by
clicking on the ’Network Health’ and ’Process Information’ links on the side navigation bar, or by
clicking on a host or service link in the output of the status CGI.

Authorization Requirements:

You must be authorized for system information in order to view Nagios process information.

If you are authorized for all hosts you can view extended information for all hosts and services.

If you are authorized for all services you can view extended information for all services.

If you are an authenticated contact you can view extended information for all hosts and services
for which you are a contact.

Event Log CGI

File Name: showlog.cgi

Description:
This CGI will display the log file. If you have log rotation enabled, you can browse notifications
present in archived log files by using the navigational links near the top of the page.

Authorization Requirements:

You must be authorized for system information in order to view the log file.

Alert History CGI

File Name: history.cgi

201

Description:
This CGI is used to display the history of problems with either a particular host or all hosts. The
output is basically a subset of the information that is displayed by the log file CGI. You have the
ability to filter the output to display only the specific types of problems you wish to see (i.e. hard
and/or soft alerts, various types of service and host alerts, all types of alerts, etc.). If you have log
rotation enabled, you can browse history information present in archived log files by using the
navigational links near the top of the page.

Authorization Requirements:

If you are authorized for all hosts you can view history information for all hosts and all services.

If you are authorized for all services you can view history information for all services.

If you are an authenticated contact you can view history information for all services and hosts for
which you are a contact.

Notifications CGI

File Name: notifications.cgi

Description:
This CGI is used to display host and service notifications that have been sent to various contacts. The
output is basically a subset of the information that is displayed by the log file CGI. You have the
ability to filter the output to display only the specific types of notifications you wish to see (i.e.
service notifications, host notifications, notifications sent to specific contacts, etc). If you have log
rotation enabled, you can browse notifications present in archived log files by using the navigational
links near the top of the page.

Authorization Requirements:

If you are authorized for all hosts you can view notifications for all hosts and all services.

If you are authorized for all services you can view notifications for all services.

If you are an authenticated contact you can view notifications for all services and hosts for which
you are a contact.

Trends CGI

202

File Name: trends.cgi

Description:
This CGI is used to create a graph of host or service states over an arbitrary period of time. In order
for this CGI to be of much use, you should enable log rotation and keep archived logs in the path
specified by the log_archive_path directive. The CGI uses Thomas Boutell’s gd library (version 1.6.3
or higher) to create the trends image.

Authorization Requirements:

If you are authorized for all hosts you can view trends for all hosts and all services.

If you are authorized for all services you can view trends for all services.

If you are an authenticated contact you can view trends for all services and hosts for which you are
a contact.

Availability Reporting CGI

File Name: avail.cgi

Description:
This CGI is used to report on the availability of hosts and services over a user-specified period of
time. In order for this CGI to be of much use, you should enable log rotation and keep archived logs
in the path specified by the log_archive_path directive.

Authorization Requirements:

If you are authorized for all hosts you can view availability data for all hosts and all services.

If you are authorized for all services you can view availability data for all services.

If you are an authenticated contact you can view availability data for all services and hosts for
which you are a contact.

203

http://www.boutell.com/gd

Alert Histogram CGI

File Name: histogram.cgi

Description:
This CGI is used to report on the availability of hosts and services over a user-specified period of
time. In order for this CGI to be of much use, you should enable log rotation and keep archived logs
in the path specified by the log_archive_path directive. The CGI uses Thomas Boutell’s gd library
(version 1.6.3 or higher) to create the histogram image.

Authorization Requirements:

If you are authorized for all hosts you can view histograms for all hosts and all services.

If you are authorized for all services you can view histograms for all services.

If you are an authenticated contact you can view histograms for all services and hosts for which
you are a contact.

Alert Summary CGI

File Name: summary.cgi

Description:
This CGI provides some generic reports about host and service alert data, including alert totals, top
alert producers, etc.

Authorization Requirements:

If you are authorized for all hosts you can view summary information for all hosts and all services.

If you are authorized for all services you can view summary information for all services.

If you are an authenticated contact you can view summary information for all services and hosts
for which you are a contact.

204

http://www.boutell.com/gd

205

Custom CGI Headers and Footers

Introduction

If you’re doing custom installs of Nagios for clients, you may want to have a custom header and/or
footer displayed in the output of the CGIs. This is particularly useful for displaying support contact
information, etc. to the end user.

It is important to note that, unless the custom header and footer files are executable, they are not
processed in any way before they are displayed. The contents of the header and footer include files are
simply read and displayed in the CGI output. That means they can only contain information a web
browser can understand (HTML, JavaScript, etc.).

If the custom header and footer files are executable, then the files are executed and their output returned
to the user, so they should output valid HTML. Using this you can run your own custom designed CGI
to insert data into the nagios display. This has been used to insert graphs from rrdtool using ddraw and
command menus into the nagios display pane. The execuable customer header and footer files are run
with the same CGI environment as the main nagios cgi, so your files can parse the query information,
authenticated user information etc. to produce appropriate output.

How Does It Work?

You can include custom headers and footers in the output of the CGIs by dropping some appropriately
named HTML files in the ssi/ subdirectory of the Nagios HTML directory (i.e. /usr/local/nagios/share/ssi).

Custom headers are included immediately after the <BODY> tag in the CGI output, while custom
footers are included immediately before the closing </BODY> tag.

There are two types of customer headers and footers:

Global headers/footers. These files should be named common-header.ssi and common-footer.ssi,
respectively. If these files exist, they will be included in the output of all CGIs.

CGI-specific headers/footers. These files should be named in the format CGINAME-header.ssi and
CGINAME-footer.ssi, where CGINAME is the physical name of the CGI without the .cgi extension.
For example, the header and footer files for the alert summary CGI (summary.cgi) would be named
summary-header.ssi and summary-footer.ssi, respectively.

You are not required to use any custom headers or footers. You can use only a global header if you wish.
You can use only CGI-specific headers and a global footer if you wish. Whatever you want. Really.

206

Template-Based Object Configuration

Notes

When creating and/or editing configuration files, keep the following in mind:

1. Lines that start with a ’#’ character are taken to be comments and are not processed

2. Directive names are case-sensitive

Introduction

One of the benefits of using the template-based config file format is that you can create object definitions
that have some of their properties inherited from other object definitions. The notion of object
inheritence, along with documentation on how to do it, is described here. I strongly suggest that you
familiarize yourself with object inheritence once you read over the documentation presented below, as
inheritence will make the job of creating and maintaining object definitions much easier than it
otherwise would be.

Time-Saving Tricks

There are several things you can do with template-based object definitions that allow you to create large
numbers of objects using just a small number of definitions in your config file(s). One example of such a
trick is the ability to define a single service object that creates a service for multiple hosts and/or
hostgroups. These tricks are described here.

Retention Notes

It is important to point out that several directives in host and service definitions may not be picked up
by Nagios when you change them. Host and service directives that can exhibit this behavior are marked
with an asterisk (*). The reason for this behavior is due to the fact that Nagios chooses to honor values
stored in the state retention file over values found in the config files, assuming you have state retention
enabled on a program-wide basis and the value of the directive is changed during runtime (by
submitting an external command).

One way to get around this problem is to disable the retention of non-status information using the
retain_nonstatus_information directive in the host and service definitions. Disabling this directive will
cause Nagios to take the initial values for these directives from your config files, rather than from the
state retention file when it (re)starts. Using this option is not recommended, as it may result in some
unexpected (from your point of view) results.

Alternatively, you can issue the appropriate external command or change the value of the host or service
directive via the web interface, so that it matches what you’ve changed it to in the config files. This is
usually done by using the extended information CGI. This option takes a bit more work, but is
preferable to disabling the retention of non-status information (mentioned above).

Sample Configuration

A few sample object configuration files are created when you run the configure script - you can find
them in the sample-config/template-object/ subdirectory of the Nagios distribution.

Object Types

207

Host definitions
Host group definitions
Service definitions
Service group definitions
Contact definitions
Contact group definitions
Time period definitions
Command definitions
Service dependency definitions
Service escalation definitions
Host dependency definitions
Host escalation definitions
Extended host information definitions
Extended service information definitions

Host Definition

Description:

A host definition is used to define a physical server, workstation, device, etc. that resides on your
network.

Definition Format:

Note: Directives in red are required, while those in black are optional.

208

define host{

host_name host_name

alias alias

address address

parents host_names

hostgroups hostgroup_names

check_command command_name

max_check_attempts #

check_interval #

active_checks_enabled [0/1]

passive_checks_enabled [0/1]

check_period timeperiod_name

obsess_over_host [0/1]

check_freshness [0/1]

freshness_threshold #

event_handler command_name

event_handler_enabled [0/1]

low_flap_threshold #

high_flap_threshold #

flap_detection_enabled [0/1]

process_perf_data [0/1]

retain_status_information [0/1]

retain_nonstatus_information [0/1]

contact_groups contact_groups

notification_interval #

notification_period timeperiod_name

notification_options [d,u,r,f]

notifications_enabled [0/1]

stalking_options [o,d,u]

 }

Example Definition:

209

define host{
 host_name bogus-router
 alias Bogus Router #1
 address 192.168.1.254
 parents server-backbone
 check_command check-host-alive
 max_check_attempts 5
 check_period 24x7
 process_perf_data 0
 retain_nonstatus_information 0
 contact_groups router-admins
 notification_interval 30
 notification_period 24x7
 notification_options d,u,r
 }

Directive Descriptions:

host_name: This directive is used to define a short name used to identify the
host. It is used in host group and service definitions to reference
this particular host. Hosts can have multiple services (which are
monitored) associated with them. When used properly, the
$HOSTNAME$ macro will contain this short name.

alias: This directive is used to define a longer name or description used
to identify the host. It is provided in order to allow you to more
easily identify a particular host. When used properly, the
$HOSTALIAS$ macro will contain this alias/description.

address: This directive is used to define the address of the host. Normally,
this is an IP address, although it could really be anything you
want (so long as it can be used to check the status of the host). You
can use a FQDN to identify the host instead of an IP address, but if
DNS services are not availble this could cause problems. When
used properly, the $HOSTADDRESS$ macro will contain this
address. Note: If you do not specify an address directive in a host
definition, the name of the host will be used as its address. A word
of caution about doing this, however - if DNS fails, most of your
service checks will fail because the plugins will be unable to
resolve the host name.

parents: This directive is used to define a comma-delimited list of short
names of the "parent" hosts for this particular host. Parent hosts
are typically routers, switches, firewalls, etc. that lie between the
monitoring host and a remote hosts. A router, switch, etc. which is
closest to the remote host is considered to be that host’s "parent".
Read the "Determining Status and Reachability of Network Hosts"
document located here for more information. If this host is on the
same network segment as the host doing the monitoring (without
any intermediate routers, etc.) the host is considered to be on the
local network and will not have a parent host. Leave this value
blank if the host does not have a parent host (i.e. it is on the same
segment as the Nagios host). The order in which you specify
parent hosts has no effect on how things are monitored.

210

hostgroups: This directive is used to identify the short name(s) of the
hostgroup(s) that the host belongs to. Multiple hostgroups should
are seperated by commas. This directive may be used as an
alternative to (or in addition to) using the members directive in
hostgroup definitions.

check_command: This directive is used to specify the short name of the command
that should be used to check if the host is up or down. Typically,
this command would try and ping the host to see if it is "alive".
The command must return a status of OK (0) or Nagios will
assume the host is down. If you leave this argument blank, the
host will not be checked - Nagios will always assume the host is
up. This is useful if you are monitoring printers or other devices
that are frequently turned off. The maximum amount of time that
the notification command can run is controlled by the
host_check_timeout option.

max_check_attempts: This directive is used to define the number of times that Nagios
will retry the host check command if it returns any state other than
an OK state. Setting this value to 1 will cause Nagios to generate
an alert without retrying the host check again. Note: If you do not
want to check the status of the host, you must still set this to a
minimum value of 1. To bypass the host check, just leave the
check_command option blank.

check_interval: NOTE: Do NOT enable regularly scheduled checks of a host unless you
absolutely need to! Host checks are already performed on-demand when
necessary, so there are few times when regularly scheduled checks would
be needed. Regularly scheduled host checks can negatively impact
performance - see the performance tuning tips for more information. This
directive is used to define the number of "time units" between
regularly scheduled checks of the host. Unless you’ve changed the
interval_length directive from the default value of 60, this number
will mean minutes. More information on this value can be found
in the check scheduling documentation.

active_checks_enabled *: This directive is used to determine whether or not active checks
(either regularly scheduled or on-demand) of this host are
enabled. Values: 0 = disable active host checks, 1 = enable active
host checks.

passive_checks_enabled *: This directive is used to determine whether or not passive checks
are enabled for this host. Values: 0 = disable passive host checks, 1
= enable passive host checks.

check_period: This directive is used to specify the short name of the time period
during which active checks of this host can be made.

obsess_over_host *: This directive determines whether or not checks for the host will
be "obsessed" over using the ochp_command.

check_freshness *: This directive is used to determine whether or not freshness
checks are enabled for this host. Values: 0 = disable freshness
checks, 1 = enable freshness checks.

211

freshness_threshold: This directive is used to specify the freshness threshold (in
seconds) for this host. If you set this directive to a value of 0,
Nagios will determine a freshness threshold to use automatically.

event_handler: This directive is used to specify the short name of the command
that should be run whenever a change in the state of the host is
detected (i.e. whenever it goes down or recovers). Read the
documentation on event handlers for a more detailed explanation
of how to write scripts for handling events. The maximum amount
of time that the event handler command can run is controlled by
the event_handler_timeout option.

event_handler_enabled *: This directive is used to determine whether or not the event
handler for this host is enabled. Values: 0 = disable host event
handler, 1 = enable host event handler.

low_flap_threshold: This directive is used to specify the low state change threshold
used in flap detection for this host. More information on flap
detection can be found here. If you set this directive to a value of 0,
the program-wide value specified by the low_host_flap_threshold
directive will be used.

high_flap_threshold: This directive is used to specify the high state change threshold
used in flap detection for this host. More information on flap
detection can be found here. If you set this directive to a value of 0,
the program-wide value specified by the high_host_flap_threshold
directive will be used.

flap_detection_enabled *: This directive is used to determine whether or not flap detection is
enabled for this host. More information on flap detection can be
found here. Values: 0 = disable host flap detection, 1 = enable host
flap detection.

process_perf_data *: This directive is used to determine whether or not the processing
of performance data is enabled for this host. Values: 0 = disable
performance data processing, 1 = enable performance data
processing.

retain_status_information: This directive is used to determine whether or not status-related
information about the host is retained across program restarts.
This is only useful if you have enabled state retention using the
retain_state_information directive. Value: 0 = disable status
information retention, 1 = enable status information retention.

retain_nonstatus_information: This directive is used to determine whether or not non-status
information about the host is retained across program restarts.
This is only useful if you have enabled state retention using the
retain_state_information directive. Value: 0 = disable non-status
information retention, 1 = enable non-status information retention.

contact_groups: This is a list of the short names of the contact groups that should be
notified whenever there are problems (or recoveries) with this
host. Multiple contact groups should be separated by commas.

212

notification_interval: This directive is used to define the number of "time units" to wait
before re-notifying a contact that this server is still down or
unreachable. Unless you’ve changed the interval_length directive
from the default value of 60, this number will mean minutes. If
you set this value to 0, Nagios will not re-notify contacts about
problems for this host - only one problem notification will be sent
out.

notification_period: This directive is used to specify the short name of the time period
during which notifications of events for this host can be sent out to
contacts. If a host goes down, becomes unreachable, or recoveries
during a time which is not covered by the time period, no
notifications will be sent out.

notification_options: This directive is used to determine when notifications for the host
should be sent out. Valid options are a combination of one or more
of the following: d = send notifications on a DOWN state, u = send
notifications on an UNREACHABLE state, r = send notifications
on recoveries (OK state), and f = send notifications when the host
starts and stops flapping. If you specify n (none) as an option, no
host notifications will be sent out. Example: If you specify d,r in
this field, notifications will only be sent out when the host goes
DOWN and when it recovers from a DOWN state.

notifications_enabled *: This directive is used to determine whether or not notifications for
this host are enabled. Values: 0 = disable host notifications, 1 =
enable host notifications.

stalking_options: This directive determines which host states "stalking" is enabled
for. Valid options are a combination of one or more of the
following: o = stalk on UP states, d = stalk on DOWN states, and u
= stalk on UNREACHABLE states. More information on state
stalking can be found here.

Host Group Definition

Description:

A host group definition is used to group one or more hosts together for display purposes in the CGIs.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define hostgroup{

hostgroup_name hostgroup_name

alias alias

members members

 }

213

Example Definition:

define hostgroup{
 hostgroup_name novell-servers
 alias Novell Servers
 members netware1,netware2,netware3,netware4
 }

Directive Descriptions:

hostgroup_name: This directive is used to define a short name used to identify the host group.

alias: This directive is used to define is a longer name or description used to identify
the host group. It is provided in order to allow you to more easily identify a
particular host group.

members: This is a list of the short names of hosts that should be included in this group.
Multiple host names should be separated by commas. This directive may be
used as an alternative to (or in addition to) the hostgroups directive in host
definitions.

Service Definition

Description:

A service definition is used to identify a "service" that runs on a host. The term "service" is used very
loosely. It can mean an actual service that runs on the host (POP, SMTP, HTTP, etc.) or some other type
of metric associated with the host (response to a ping, number of logged in users, free disk space, etc.).
The different arguments to a service definition are outlined below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

214

define service{

host_name host_name

service_description service_description

servicegroups servicegroup_names

is_volatile [0/1]

check_command command_name

max_check_attempts #

normal_check_interval #

retry_check_interval #

active_checks_enabled [0/1]

passive_checks_enabled [0/1]

check_period timeperiod_name

parallelize_check [0/1]

obsess_over_service [0/1]

check_freshness [0/1]

freshness_threshold #

event_handler command_name

event_handler_enabled [0/1]

low_flap_threshold #

high_flap_threshold #

flap_detection_enabled [0/1]

process_perf_data [0/1]

retain_status_information [0/1]

retain_nonstatus_information [0/1]

notification_interval #

notification_period timeperiod_name

notification_options [w,u,c,r,f]

notifications_enabled [0/1]

contact_groups contact_groups

stalking_options [o,w,u,c]

 }

215

Example Definition:

define service{
 host_name linux-server
 service_description check-disk-sda1
 check_command check-disk!/dev/sda1
 max_check_attempts 5
 normal_check_interval 5
 retry_check_interval 3
 check_period 24x7
 notification_interval 30
 notification_period 24x7
 notification_options w,c,r
 contact_groups linux-admins
 }

Directive Descriptions:

host_name: This directive is used to specify the short name of the host that the
service "runs" on or is associated with.

service_description;: This directive is used to define the description of the service,
which may contain spaces, dashes, and colons (semicolons,
apostrophes, and quotation marks should be avoided). No two
services associated with the same host can have the same
description. Services are uniquely identified with their host_name
and service_description directives.

servicegroups: This directive is used to identify the short name(s) of the
servicegroup(s) that the service belongs to. Multiple servicegroups
should are seperated by commas. This directive may be used as an
alternative to using the members directive in servicegroup
definitions.

is_volatile: This directive is used to denote whether the service is "volatile".
Services are normally not volatile. More information on volatile
service and how they differ from normal services can be found
here. Value: 0 = service is not volatile, 1 = service is volatile.

check_command: This directive is used to specify the short name of the command
that Nagios will run in order to check the status of the service. The
maximum amount of time that the service check command can
run is controlled by the service_check_timeout option.

max_check_attempts: This directive is used to define the number of times that Nagios
will retry the service check command if it returns any state other
than an OK state. Setting this value to 1 will cause Nagios to
generate an alert without retrying the service check again.

normal_check_interval: This directive is used to define the number of "time units" to wait
before scheduling the next "regular" check of the service. "Regular"
checks are those that occur when the service is in an OK state or
when the service is in a non-OK state, but has already been
rechecked max_attempts number of times. Unless you’ve changed
the interval_length directive from the default value of 60, this
number will mean minutes. More information on this value can be
found in the check scheduling documentation.

216

retry_check_interval: This directive is used to define the number of "time units" to wait
before scheduling a re-check of the service. Services are
rescheduled at the retry interval when the have changed to a
non-OK state. Once the service has been retried max_attempts
times without a change in its status, it will revert to being
scheduled at its "normal" rate as defined by the check_interval
value. Unless you’ve changed the interval_length directive from
the default value of 60, this number will mean minutes. More
information on this value can be found in the check scheduling
documentation.

active_checks_enabled *: This directive is used to determine whether or not active checks of
this service are enabled. Values: 0 = disable active service checks, 1
= enable active service checks.

passive_checks_enabled *: This directive is used to determine whether or not passive checks
of this service are enabled. Values: 0 = disable passive service
checks, 1 = enable passive service checks.

check_period: This directive is used to specify the short name of the time period
during which active checks of this service can be made.

parallelize_check: This directive is used to determine whether or not the service
check can be parallelized. By default, all service checks are
parallelized. Disabling parallel checks of services can result in
serious performance problems. More information on service check
parallelization can be found here. Values: 0 = service check cannot
be parallelized (use with caution!), 1 = service check can be
parallelized.

obsess_over_service *: This directive determines whether or not checks for the service
will be "obsessed" over using the ocsp_command.

check_freshness *: This directive is used to determine whether or not freshness
checks are enabled for this service. Values: 0 = disable freshness
checks, 1 = enable freshness checks.

freshness_threshold: This directive is used to specify the freshness threshold (in
seconds) for this service. If you set this directive to a value of 0,
Nagios will determine a freshness threshold to use automatically.

event_handler_enabled *: This directive is used to determine whether or not the event
handler for this service is enabled. Values: 0 = disable service
event handler, 1 = enable service event handler.

low_flap_threshold: This directive is used to specify the low state change threshold
used in flap detection for this service. More information on flap
detection can be found here. If you set this directive to a value of 0,
the program-wide value specified by the
low_service_flap_threshold directive will be used.

high_flap_threshold: This directive is used to specify the high state change threshold
used in flap detection for this service. More information on flap
detection can be found here. If you set this directive to a value of 0,
the program-wide value specified by the
high_service_flap_threshold directive will be used.

217

flap_detection_enabled *: This directive is used to determine whether or not flap detection is
enabled for this service. More information on flap detection can be
found here. Values: 0 = disable service flap detection, 1 = enable
service flap detection.

process_perf_data *: This directive is used to determine whether or not the processing
of performance data is enabled for this service. Values: 0 = disable
performance data processing, 1 = enable performance data
processing.

retain_status_information: This directive is used to determine whether or not status-related
information about the service is retained across program restarts.
This is only useful if you have enabled state retention using the
retain_state_information directive. Value: 0 = disable status
information retention, 1 = enable status information retention.

retain_nonstatus_information: This directive is used to determine whether or not non-status
information about the service is retained across program restarts.
This is only useful if you have enabled state retention using the
retain_state_information directive. Value: 0 = disable non-status
information retention, 1 = enable non-status information retention.

notification_interval: This directive is used to define the number of "time units" to wait
before re-notifying a contact that this service is still in a non-OK
state. Unless you’ve changed the interval_length directive from
the default value of 60, this number will mean minutes. If you set
this value to 0, Nagios will not re-notify contacts about problems
for this service - only one problem notification will be sent out.

notification_period: This directive is used to specify the short name of the time period
during which notifications of events for this service can be sent out
to contacts. No service notifications will be sent out during times
which is not covered by the time period.

notification_options: This directive is used to determine when notifications for the
service should be sent out. Valid options are a combination of one
or more of the following: w = send notifications on a WARNING
state, u = send notifications on an UNKNOWN state, c = send
notifications on a CRITICAL state, r = send notifications on
recoveries (OK state), and f = send notifications when the service
starts and stops flapping. If you specify n (none) as an option, no
service notifications will be sent out. Example: If you specify w,r in
this field, notifications will only be sent out when the service goes
into a WARNING state and when it recovers from a WARNING
state.

notifications_enabled *: This directive is used to determine whether or not notifications for
this service are enabled. Values: 0 = disable service notifications, 1
= enable service notifications.

contact_groups: This is a list of the short names of the contact groups that should be
notified whenever there are problems (or recoveries) with this
service. Multiple contact groups should be separated by commas.

218

stalking_options: This directive determines which service states "stalking" is enabled
for. Valid options are a combination of one or more of the
following: o = stalk on OK states, w = stalk on WARNING states,
u = stalk on UNKNOWN states, and c = stalk on CRITICAL states.
More information on state stalking can be found here.

Service Group Definition

Description:

A service group definition is used to group one or more services together for display purposes in the
CGIs.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define servicegroup{

servicegroup_name servicegroup_name

alias alias

members members

 }

Example Definition:

define servicegroup{
 servicegroup_name dbservices
 alias Database Services
 members ms1,SQL Server,ms1,SQL Server Agent,ms1,SQL DTC
 }

Directive Descriptions:

servicegroup_name: This directive is used to define a short name used to identify the service
group.

alias: This directive is used to define is a longer name or description used to
identify the service group. It is provided in order to allow you to more easily
identify a particular service group.

members: This is a list of the descriptions of services (and the names of their
corresponding hosts) that should be included in this group. Host and service
names should be separated by commas. This directive may be used as an
alternative to the servicegroups directive in service definitions. The format of
the member directive is as follows (note that a host name must precede a
service name/description):

members=<host1>,<service1>,<host2>,<service2>,...,<hostn>,<servicen>

219

Contact Definition

Description:

A contact definition is used to identify someone who should be contacted in the event of a problem on
your network. The different arguments to a contact definition are described below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define contact{

contact_name contact_name

alias alias

contactgroups contactgroup_names

host_notification_period timeperiod_name

service_notification_period timeperiod_name

host_notification_options [d,u,r,f,n]

service_notification_options [w,u,c,r,f,n]

host_notification_commands command_name

service_notification_commands command_name

email email_address

pager pager_number or pager_email_gateway

addressx additional_contact_address

 }

Example Definition:

define contact{
 contact_name jdoe
 alias John Doe
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c,r
 host_notification_options d,u,r
 service_notification_commands notify-by-email
 host_notification_commands host-notify-by-email
 email jdoe@localhost.localdomain
 pager 555-5555@pagergateway.localhost.localdomain
 address1 xxxxx.xyyy@icq.com
 address2 555-555-5555
 }

Directive Descriptions:

220

contact_name: This directive is used to define a short name used to identify the
contact. It is referenced in contact group definitions. Under the
right circumstances, the $CONTACTNAME$ macro will contain
this value.

alias: This directive is used to define a longer name or description for
the contact. Under the rights circumstances, the
$CONTACTALIAS$ macro will contain this value.

contactgroups: This directive is used to identify the short name(s) of the
contactgroup(s) that the contact belongs to. Multiple
contactgroups should are seperated by commas. This directive
may be used as an alternative to (or in addition to) using the
members directive in contactgroup definitions.

host_notification_period: This directive is used to specify the short name of the time
period during which the contact can be notified about host
problems or recoveries. You can think of this as an "on call" time
for host notifications for the contact. Read the documentation on
time periods for more information on how this works and
potential problems that may result from improper use.

service_notification_period: This directive is used to specify the short name of the time
period during which the contact can be notified about service
problems or recoveries. You can think of this as an "on call" time
for service notifications for the contact. Read the documentation
on time periods for more information on how this works and
potential problems that may result from improper use.

host_notification_commands: This directive is used to define a list of the short names of the
commands used to notify the contact of a host problem or
recovery. Multiple notification commands should be separated
by commas. All notification commands are executed when the
contact needs to be notified. The maximum amount of time that
a notification command can run is controlled by the
notification_timeout option.

host_notification_options: This directive is used to define the host states for which
notifications can be sent out to this contact. Valid options are a
combination of one or more of the following: d = notify on
DOWN host states, u = notify on UNREACHABLE host states, r
= notify on host recoveries (UP states), and f = notify when the
host starts and stops flapping. If you specify n (none) as an
option, the contact will not receive any type of host notifications.

service_notification_options: This directive is used to define the service states for which
notifications can be sent out to this contact. Valid options are a
combination of one or more of the following: w = notify on
WARNING service states, u = notify on UNKNOWN service
states, c = notify on CRITICAL service states, r = notify on
service recoveries (OK states), and f = notify when the servuce
starts and stops flapping. If you specify n (none) as an option,
the contact will not receive any type of service notifications.

221

service_notification_commands: This directive is used to define a list of the short names of the
commands used to notify the contact of a service problem or
recovery. Multiple notification commands should be separated
by commas. All notification commands are executed when the
contact needs to be notified. The maximum amount of time that
a notification command can run is controlled by the
notification_timeout option.

email: This directive is used to define an email address for the contact.
Depending on how you configure your notification commands,
it can be used to send out an alert email to the contact. Under the
right circumstances, the $CONTACTEMAIL$ macro will contain
this value.

pager: This directive is used to define a pager number for the contact. It
can also be an email address to a pager gateway (i.e.
pagejoe@pagenet.com). Depending on how you configure your
notification commands, it can be used to send out an alert page
to the contact. Under the right circumstances, the
$CONTACTPAGER$ macro will contain this value.

addressx: Address directives are used to define additional "addresses" for
the contact. These addresses can be anything - cell phone
numbers, instant messaging addresses, etc. Depending on how
you configure your notification commands, they can be used to
send out an alert o the contact. Up to six addresses can be
defined using these directives (address1 through address6). The
$CONTACTADDRESSx$ macro will contain this value.

Contact Group Definition

Description:

A contact group definition is used to group one or more contacts together for the purpose of sending out
alert/recovery notifications. When a host or service has a problem or recovers, Nagios will find the
appropriate contact groups to send notifications to, and notify all contacts in those contact groups. This
may sound complex, but for most people it doesn’t have to be. It does, however, allow for flexibility in
determining who gets notified for particular events. The different arguments to a contact group
definition are outlined below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define contactgroup{

contactgroup_name contactgroup_name

alias alias

members members

 }

222

Example Definition:

define contactgroup{
 contactgroup_name novell-admins
 alias Novell Administrators
 members jdoe,rtobert,tzach
 }

Directive Descriptions:

contactgroup_name: This directive is a short name used to identify the contact group.

alias: This directive is used to define a longer name or description used to identify
the contact group.

members: This directive is used to define a list of the short names of contacts that should
be included in this group. Multiple contact names should be separated by
commas. This directive may be used as an alternative to (or in addition to)
using the contactgroups directive in contact definitions.

Time Period Definition

Description:

A time period is a list of times during various days that are considered to be "valid" times for
notifications and service checks. It consists one or more time periods for each day of the week that
"rotate" once the week has come to an end. Exceptions to the normal weekly time range rotations are not
suported.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define timeperiod{

timeperiod_name timeperiod_name

alias alias

sunday timeranges

monday timeranges

tuesday timeranges

wednesday timeranges

thursday timeranges

friday timeranges

saturday timeranges

 }

223

Example Definition:

define timeperiod{
 timeperiod_name nonworkhours
 alias Non-Work Hours
 sunday 00:00-24:00
 monday 00:00-09:00,17:00-24:00
 tuesday 00:00-09:00,17:00-24:00
 wednesday 00:00-09:00,17:00-24:00
 thursday 00:00-09:00,17:00-24:00
 friday 00:00-09:00,17:00-24:00
 saturday 00:00-24:00
 }

Directive Descriptions:

timeperiod_name: This directives is the short name used to identify the time period.

alias: This directive is a longer name or description used to identify the time period.

someday: The sunday through saturday directives are comma-delimited lists of time
ranges that are "valid" times for a particular day of the week. Notice that there
are seven different days for which you can define time ranges (Sunday through
Saturday). Each time range is in the form of HH:MM-HH:MM, where hours
are specified on a 24 hour clock. For example, 00:15-24:00 means 12:15am in the
morning for this day until 12:20am midnight (a 23 hour, 45 minute total time
range). If you wish to exclude an entire day from the timeperiod, simply do not
include it in the timeperiod definition.

Command Definition

Description:

A command definition is just that. It defines a command. Commands that can be defined include service
checks, service notifications, service event handlers, host checks, host notifications, and host event
handlers. Command definitions can contain macros, but you must make sure that you include only
those macros that are "valid" for the circumstances when the command will be used. More information
on what macros are available and when they are "valid" can be found here. The different arguments to a
command definition are outlined below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define command{

command_name command_name

command_line command_line

 }

Example Definition:

224

define command{
 command_name check_pop
 command_line /usr/local/nagios/libexec/check_pop -H $HOSTADDRESS$
 }

Directive Descriptions:

command_name: This directive is the short name used to identify the command. It is referenced in
contact, host, and service definitions (in notification, check, and event handler
directives), among other places.

command_line: This directive is used to define what is actually executed by Nagios when the
command is used for service or host checks, notifications, or event handlers.
Before the command line is executed, all valid macros are replaced with their
respective values. See the documentation on macros for determining when you
can use different macros. Note that the command line is not surrounded in
quotes. Also, if you want to pass a dollar sign ($) on the command line, you
have to escape it with another dollar sign.

NOTE: You may not include a semicolon (;) in the command_line directive,
because everything after it will be ignored as a config file comment. You can
work around this limitation by setting one of the $USER$ macros in your
resource file to a semicolon and then referencing the appropriate $USER$ macro
in the command_line directive in place of the semicolon.

If you want to pass arguments to commands during runtime, you can use
$ARGn$ macros in the command_line directive of the command definition and
then seperate individual arguments from the command name (and from each
other) using bang (!) characters in the object definition directive (host check
command, service event handler command, etc) that references the command.
More information on how arguments in command definitions are processed
during runtime can be found in the documentation on macros.

Service Dependency Definition

Description:

Service dependencies are an advanced feature of Nagios that allow you to suppress notifications and
active checks of services based on the status of one or more other services. Service dependencies are
optional and are mainly targeted at advanced users who have complicated monitoring setups. More
information on how service dependencies work (read this!) can be found here.

Definition Format:

Note: Directives in red are required, while those in black are optional. However, you must supply at
least one type of criteria for the definition to be of much use.

225

define servicedependency{

dependent_host_name host_name

dependent_service_description service_description

host_name host_name

service_description service_description

inherits_parent [0/1]

execution_failure_criteria [o,w,u,c,p,n]

notification_failure_criteria [o,w,u,c,p,n]

 }

Example Definition:

define servicedependency{
 host_name WWW1
 service_description Apache Web Server
 dependent_host_name WWW1
 dependent_service_description Main Web Site
 execution_failure_criteria n
 notification_failure_criteria w,u,c
 }

Directive Descriptions:

226

dependent_host: This directive is used to identify the short name of the host that
the dependent service "runs" on or is associated with.

dependent_service_description: This directive is used to identify the description of the dependent
service.

host_name: This directive is used to identify the short name of the host that
the service that is being depended upon (also referred to as the
master service) "runs" on or is associated with.

service_description: This directive is used to identify the description of the service that
is being depended upon (also referred to as the master service).

inherits_parent: This directive indicates whether or not the dependency inherits
dependencies of the service that is being depended upon (also
referred to as the master service). In other words, if the master
service is dependent upon other services and any one of those
dependencies fail, this dependency will also fail.

execution_failure_criteria: This directive is used to specify the criteria that determine when
the dependent service should not be actively checked. If the
master service is in one of the failure states we specify, the
dependent service will not be actively checked. Valid options are a
combination of one or more of the following (multiple options
are seperated with commas): o = fail on an OK state, w = fail on a
WARNING state, u = fail on an UNKNOWN state, c = fail on a
CRITICAL state, and p = fail on a pending state (e.g. the service
has not yet been checked). If you specify n (none) as an option,
the execution dependency will never fail and checks of the
dependent service will always be actively checked (if other
conditions allow for it to be). Example: If you specify o,c,u in this
field, the dependent service will not be actively checked if the
master service is in either an OK, a CRITICAL, or an UNKNOWN
state.

notification_failure_criteria: This directive is used to define the criteria that determine when
notifications for the dependent service should not be sent out. If
the master service is in one of the failure states we specify,
notifications for the dependent service will not be sent to contacts.
Valid options are a combination of one or more of the following:
o = fail on an OK state, w = fail on a WARNING state, u = fail on
an UNKNOWN state, c = fail on a CRITICAL state, and p = fail
on a pending state (e.g. the service has not yet been checked). If
you specify n (none) as an option, the notification dependency
will never fail and notifications for the dependent service will
always be sent out. Example: If you specify w in this field, the
notifications for the dependent service will not be sent out if the
master service is in a WARNING state.

Service Escalation Definition

Description:

227

Service escalations are completely optional and are used to escalate notifications for a particular service.
More information on how notification escalations work can be found here.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define serviceescalation{

host_name host_name

service_description service_description

contact_groups contactgroup_name

first_notification #

last_notification #

notification_interval #

escalation_period timeperiod_name

escalation_options [w,u,c,r]

 }

Example Definition:

define serviceescalation{
 host_name nt-3
 service_description Processor Load
 first_notification 4
 last_notification 0
 notification_interval 30
 contact_groups all-nt-admins,themanagers
 }

Directive Descriptions:

228

host_name: This directive is used to identify the short name of the host that the service
the escalation should apply to is associated with.

service_description: This directive is used to identify the description of the service the escalation
should apply to.

first_notification: This directive is a number that identifies the first notification for which this
escalation is effective. For instance, if you set this value to 3, this escalation
will only be used if the service is in a non-OK state long enough for a third
notification to go out.

last_notification: This directive is a number that identifies the last notification for which this
escalation is effective. For instance, if you set this value to 5, this escalation
will not be used if more than five notifications are sent out for the service.
Setting this value to 0 means to keep using this escalation entry forever (no
matter how many notifications go out).

contact_groups: This directive is used to identify the short name of the contact group that
should be notified when the service notification is escalated. Multiple
contact groups should be separated by commas.

notification_interval: This directive is used to determine the interval at which notifications should
be made while this escalation is valid. If you specify a value of 0 for the
interval, Nagios will send the first notification when this escalation
definition is valid, but will then prevent any more problem notifications
from being sent out for the host. Notifications are sent out again until the
host recovers. This is useful if you want to stop having notifications sent out
after a certain amount of time. Note: If multiple escalation entries for a host
overlap for one or more notification ranges, the smallest notification interval
from all escalation entries is used.

escalation_period: This directive is used to specify the short name of the time period during
which this escalation is valid. If this directive is not specified, the escalation
is considered to be valid during all times.

escalation_options: This directive is used to define the criteria that determine when this service
escalation is used. The escalation is used only if the service is in one of the
states specified in this directive. If this directive is not specified in a service
escalation, the escalation is considered to be valid during all service states.
Valid options are a combination of one or more of the following: r = escalate
on an OK (recovery) state, w = escalate on a WARNING state, u = escalate
on an UNKNOWN state, and c = escalate on a CRITICAL state. Example: If
you specify w in this field, the escalation will only be used if the service is in
a WARNING state.

Host Dependency Definition

Description:

Host dependencies are an advanced feature of Nagios that allow you to suppress notifications for hosts
based on the status of one or more other hosts. Host dependencies are optional and are mainly targeted
at advanced users who have complicated monitoring setups. More information on how host
dependencies work (read this!) can be found here.

229

Definition Format:

Note: Directives in red are required, while those in black are optional.

define hostdependency{

dependent_host_name host_name

host_name host_name

inherits_parent [0/1]

execution_failure_criteria [o,d,u,p,n]

notification_failure_criteria [o,d,u,p,n]

 }

Example Definition:

define hostdependency{
 host_name WWW1
 dependent_host_name DBASE1
 notification_failure_criteria d,u
 }

Directive Descriptions:

230

dependent_host: This directive is used to identify the short name of the dependent host.

host_name: This directive is used to identify the short name of the host that is
being depended upon (also referred to as the master host).

inherits_parent: This directive indicates whether or not the dependency inherits
dependencies of the host that is being depended upon (also referred to
as the master host). In other words, if the master host is dependent
upon other hosts and any one of those dependencies fail, this
dependency will also fail.

execution_failure_criteria: This directive is used to specify the criteria that determine when the
dependent host should not be actively checked. If the master host is in
one of the failure states we specify, the dependent host will not be
actively checked. Valid options are a combination of one or more of
the following (multiple options are seperated with commas): o = fail
on an UP state, d = fail on a DOWN state, u = fail on an
UNREACHABLE state, and p = fail on a pending state (e.g. the host
has not yet been checked). If you specify n (none) as an option, the
execution dependency will never fail and the dependent host will
always be actively checked (if other conditions allow for it to be).
Example: If you specify u,d in this field, the dependent host will not
be actively checked if the master host is in either an UNREACHABLE
or DOWN state.

notification_failure_criteria: This directive is used to define the criteria that determine when
notifications for the dependent host should not be sent out. If the
master host is in one of the failure states we specify, notifications for
the dependent host will not be sent to contacts. Valid options are a
combination of one or more of the following: o = fail on an UP state,
d = fail on a DOWN state, u = fail on an UNREACHABLE state, and
p = fail on a pending state (e.g. the host has not yet been checked). If
you specify n (none) as an option, the notification dependency will
never fail and notifications for the dependent host will always be
sent out. Example: If you specify d in this field, the notifications for
the dependent host will not be sent out if the master host is in a
DOWN state.

Host Escalation Definition

Description:

Host escalations are completely optional and are used to escalate notifications for a particular host. More
information on how notification escalations work can be found here.

Definition Format:

Note: Directives in red are required, while those in black are optional.

231

define hostescalation{

host_name host_name

hostgroup_name hostgroup_name

contact_groups contactgroup_name

first_notification #

last_notification #

notification_interval #

escalation_period timeperiod_name

escalation_options [d,u,r]

 }

Example Definition:

define hostescalation{
 host_name router-34
 first_notification 5
 last_notification 8
 notification_interval 60
 contact_groups all-router-admins
 }

Directive Descriptions:

232

host_name: This directive is used to identify the short name of the host that the escalation
should apply to.

hostgroup_name: This directive is used to identify the short name(s) of the hostgroup(s) that
the escalation should apply to. Multiple hostgroups should are seperated by
commas. If this is used, the escalation will apply to all hosts that are
members of the specified hostgroup(s).

first_notification: This directive is a number that identifies the first notification for which this
escalation is effective. For instance, if you set this value to 3, this escalation
will only be used if the host is down or unreachable long enough for a third
notification to go out.

last_notification: This directive is a number that identifies the last notification for which this
escalation is effective. For instance, if you set this value to 5, this escalation
will not be used if more than five notifications are sent out for the host.
Setting this value to 0 means to keep using this escalation entry forever (no
matter how many notifications go out).

contact_groups: This directive is used to identify the short name of the contact group that
should be notified when the host notification is escalated. Multiple contact
groups should be separated by commas.

notification_interval: This directive is used to determine the interval at which notifications should
be made while this escalation is valid. If you specify a value of 0 for the
interval, Nagios will send the first notification when this escalation
definition is valid, but will then prevent any more problem notifications
from being sent out for the host. Notifications are sent out again until the
host recovers. This is useful if you want to stop having notifications sent out
after a certain amount of time. Note: If multiple escalation entries for a host
overlap for one or more notification ranges, the smallest notification interval
from all escalation entries is used.

escalation_period: This directive is used to specify the short name of the time period during
which this escalation is valid. If this directive is not specified, the escalation
is considered to be valid during all times.

escalation_options: This directive is used to define the criteria that determine when this host
escalation is used. The escalation is used only if the host is in one of the
states specified in this directive. If this directive is not specified in a host
escalation, the escalation is considered to be valid during all host states.
Valid options are a combination of one or more of the following: r = escalate
on an UP (recovery) state, d = escalate on a DOWN state, and u = escalate
on an UNREACHABLE state. Example: If you specify d in this field, the
escalation will only be used if the host is in a DOWN state.

Extended Host Information Definition

Description:

Extended host information entries are basically used to make the output from the status, statusmap,
statuswrl, and extinfo CGIs look pretty. They have no effect on monitoring and are completely optional.

233

Definition Format:

Note: Variables in red are required, while those in black are optional. However, you need to supply at
least one optional variable in each definition for it to be of much use.

define hostextinfo{

host_name host_name

notes note_string

notes_url url

action_url url

icon_image image_file

icon_image_alt alt_string

vrml_image image_file

statusmap_image image_file

2d_coords x_coord,y_coord

3d_coords x_coord,y_coord,z_coord

 }

Example Definition:

define hostextinfo{
 host_name netware1
 notes This is the primary Netware file server
 notes_url http://webserver.localhost.localdomain/hostinfo.pl?host=netware1
 icon_image novell40.png
 icon_image_alt IntranetWare 4.11
 vrml_image novell40.png
 statusmap_image novell40.gd2
 2d_coords 100,250
 3d_coords 100.0,50.0,75.0
 }

Variable Descriptions:

host_name: This variable is used to identify the short name of the host which the data is
associated with.

notes: This directive is used to define an optional string of notes pertaining to the
host. If you specify a note here, you will see the it in the extended information
CGI (when you are viewing information about the specified host).

234

notes_url: This variable is used to define an optional URL that can be used to provide
more information about the host. If you specify an URL, you will see a link that
says "Extra Host Notes" in the extended information CGI (when you are
viewing information about the specified host). Any valid URL can be used. If
you plan on using relative paths, the base path will the the same as what is
used to access the CGIs (i.e. /cgi-bin/nagios/). This can be very useful if you want
to make detailed information on the host, emergency contact methods, etc.
available to other support staff.

action_url: This directive is used to define an optional URL that can be used to provide
more actions to be performed on the host. If you specify an URL, you will see a
link that says "Extra Host Actions" in the extended information CGI (when you
are viewing information about the specified host). Any valid URL can be used.
If you plan on using relative paths, the base path will the the same as what is
used to access the CGIs (i.e. /cgi-bin/nagios/).

icon_image: This variable is used to define the name of a GIF, PNG, or JPG image that
should be associated with this host. This image will be displayed in the status
and extended information CGIs. The image will look best if it is 40x40 pixels in
size. Images for hosts are assumed to be in the logos/ subdirectory in your
HTML images directory (i.e. /usr/local/nagios/share/images/logos).

icon_image_alt: This variable is used to define an optional string that is used in the ALT tag of
the image specified by the <icon_image> argument. The ALT tag is used in the
status, extended information and statusmap CGIs.

vrml_image: This variable is used to define the name of a GIF, PNG, or JPG image that
should be associated with this host. This image will be used as the texture map
for the specified host in the statuswrl CGI. Unlike the image you use for the
<icon_image> variable, this one should probably not have any transparency. If it
does, the host object will look a bit wierd. Images for hosts are assumed to be in
the logos/ subdirectory in your HTML images directory (i.e.
/usr/local/nagios/share/images/logos).

statusmap_image: This variable is used to define the name of an image that should be associated
with this host in the statusmap CGI. You can specify a JPEG, PNG, and GIF
image if you want, although I would strongly suggest using a GD2 format
image, as other image formats will result in a lot of wasted CPU time when the
statusmap image is generated. GD2 images can be created from PNG images by
using the pngtogd2 utility supplied with Thomas Boutell’s gd library. The GD2
images should be created in uncompressed format in order to minimize CPU
load when the statusmap CGI is generating the network map image. The image
will look best if it is 40x40 pixels in size. You can leave these option blank if you
are not using the statusmap CGI. Images for hosts are assumed to be in the
logos/ subdirectory in your HTML images directory (i.e.
/usr/local/nagios/share/images/logos).

235

http://www.boutell.com/gd/

2d_coords: This variable is used to define coordinates to use when drawing the host in the
statusmap CGI. Coordinates should be given in positive integers, as the
correspond to physical pixels in the generated image. The origin for drawing
(0,0) is in the upper left hand corner of the image and extends in the positive x
direction (to the right) along the top of the image and in the positive y direction
(down) along the left hand side of the image. For reference, the size of the icons
drawn is usually about 40x40 pixels (text takes a little extra space). The
coordinates you specify here are for the upper left hand corner of the host icon
that is drawn. Note: Don’t worry about what the maximum x and y coordinates
that you can use are. The CGI will automatically calculate the maximum
dimensions of the image it creates based on the largest x and y coordinates you
specify.

3d_coords: This variable is used to define coordinates to use when drawing the host in the
statuswrl CGI. Coordinates can be positive or negative real numbers. The
origin for drawing is (0.0,0.0,0.0). For reference, the size of the host cubes
drawn is 0.5 units on each side (text takes a little more space). The coordinates
you specify here are used as the center of the host cube.

Extended Service Information Definition

Description:

Extended service information entries are basically used to make the output from the status and extinfo
CGIs look pretty. They have no effect on monitoring and are completely optional.

Definition Format:

Note: Variables in red are required, while those in black are optional. However, you need to supply at
least one optional variable in each definition for it to be of much use.

define serviceextinfo{

host_name host_name

service_description service_description

notes note_string

notes_url url

action_url url

icon_image image_file

icon_image_alt alt_string

 }

Example Definition:

236

define serviceextinfo{
 host_name linux2
 service_description Log Anomalies
 notes Security-related log anomalies on secondary Linux server
 notes_url http://webserver.localhost.localdomain/serviceinfo.pl?host=linux2&service=Log+Anomalies
 icon_image security.png
 icon_image_alt Security-Related Alerts
 }

Variable Descriptions:

host_name: This directive is used to identify the short name of the host that the service is
associated with.

service_description: This directive is description of the service which the data is associated with.

notes: This directive is used to define an optional string of notes pertaining to the
service. If you specify a note here, you will see the it in the extended
information CGI (when you are viewing information about the specified
service).

notes_url: This directive is used to define an optional URL that can be used to provide
more information about the service. If you specify an URL, you will see a link
that says "Extra Service Notes" in the extended information CGI (when you
are viewing information about the specified service). Any valid URL can be
used. If you plan on using relative paths, the base path will the the same as
what is used to access the CGIs (i.e. /cgi-bin/nagios/). This can be very useful if
you want to make detailed information on the service, emergency contact
methods, etc. available to other support staff.

action_url: This directive is used to define an optional URL that can be used to provide
more actions to be performed on the service. If you specify an URL, you will
see a link that says "Extra Service Actions" in the extended information CGI
(when you are viewing information about the specified service). Any valid
URL can be used. If you plan on using relative paths, the base path will the
the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).

icon_image: This variable is used to define the name of a GIF, PNG, or JPG image that
should be associated with this host. This image will be displayed in the status
and extended information CGIs. The image will look best if it is 40x40 pixels
in size. Images for hosts are assumed to be in the logos/ subdirectory in your
HTML images directory (i.e. /usr/local/nagios/share/images/logos).

icon_image_alt: This variable is used to define an optional string that is used in the ALT tag
of the image specified by the <icon_image> argument. The ALT tag is used in
the status, extended information and statusmap CGIs.

237

External Command File Permissions

Notes

These instructions assume that you’ve installed Nagios on a dedicated monitoring/admin box that
doesn’t contain normal user accounts (i.e. isn’t a public machine). If you’ve installed Nagios on a
public/multi-user machine, I would suggest setting more restrictive permissions on the external
command file and using something like CGIWrap to run the CGIs as a specific user. Failing to do so may
allow normal users to control Nagios through the external command file! I’m guessing you don’t want
that. More information on securing Nagios can be found here.

Introduction

One of the most common problems people have seems to be with setting proper permissions for the
external command file. You need to set the proper permission on the /usr/local/nagios/var/rw directory (or
whatever the path portion of the command_file directive in your main configuration file is set to). I’ll
show you how to do this. Note: You must be root in order to do some of these steps...

Users and Groups

First, find the user that your web server process is running as. On many systems this is the user nobody,
although it will vary depending on what OS/distribution you are running. You’ll also need to know
what user Nagios is effectively running as - this is specified with the nagios_user variable in the main
config file.

Next we’re going to create a new group whose members include the user the web server is running as
and the user Nagios is running as. Let’s say we call this new group ’nagiocmd’ (you can name it
differently if you wish). On RedHat Linux you can use the following command to add a new group
(other systems may differ):

/usr/sbin/groupadd nagiocmd

Next, add the web server user (nobody or apache, etc) and the Nagios user (nagios) to the newly created
group with the following commands:

/usr/sbin/usermod -G nagiocmd nagios
/usr/sbin/usermod -G nagiocmd nobody

Creating the directory

Next, create the directory where the command file should be stored. By default, this is
/usr/local/nagios/var/rw, although it can be changed by modifying the path specified in thecommand_file
directory.

mkdir /usr/local/nagios/var/rw

Setting directory permissions

Next, change the ownership of the directory that will be used to hold the command file...

chown nagios.nagiocmd /usr/local/nagios/var/rw

Make sure the Nagios user has full permissions on the directory...

238

http://cgiwrap.unixtools.org/

chmod u+rwx /usr/local/nagios/var/rw

Make sure the group we created has full permissions on the directory.

chmod g+rwx /usr/local/nagios/var/rw

In order to force newly created files in the directory to inherit the group permissions from the directory,
we need to enable the group sticky bit on the directory...

chmod g+s /usr/local/nagios/var/rw

Verifying the permissions

Check the permissions on the rw/ subdirectory by running ’ls -al /usr/local/nagios/var’. You should see
something similiar to the following:

drwxrws--- 2 nagios nagiocmd 1024 Aug 11 16:30 rw

Note that the user nagios is the owner of the directory and the group nagiocmd is the group owner of the
directory. The nagios user has rwx permissions and group nagiocmd has rw permissions on the directory.
Also, note that the group sticky bit is enabled. That’s what we want...

Restart your web server

Once you set the proper permission on the directory containing the external command file, make sure to
restart your web server. If you fail to do this, Apache will not be able to write to the external command
file, even though the user it runs as is a member of the nagiocmd group.

Additional notes...

If you supplied the --with-command-grp=somegroup option when running the configure script, you can
create the directory to hold the command file and set the proper permissions automatically by running
’make install-commandmode’.

239

Extended Information Configuration

What is Extended Information?

Extended information consists of optional definitions for hosts and services that is used by the CGIs in
the following ways:

to provide URLs to additional information about the host or service

to add pretty icons to the hosts and services displayed in the web interface

to draw hosts in the statusmap and statuswrl CGIs at user-defined 2-D and 3-D coordinates

Where is Extended Information Defined?

Extended information definitions are stored in object configuration files along with definitions for hosts,
services, contacts, etc. You can use templates to define entries for multiple hosts and services quickly
and easily.

240

	
	About Nagios®

	
	What's New in Version 2.0

	
	Advice for Beginners

	
	Installing Nagios

	
	Setting Up The Web Interface

	
	Configuring Nagios

	
	Main Configuration File Options

	
	Object Definitions

	
	CGI Configuration File Options

	
	Authentication And Authorization In The CGIs

	
	Verifying Your Nagios Configuration

	
	Starting Nagios

	
	Stopping And Restarting Nagios

	
	Nagios Plugins

	
	Nagios Addons

	
	Determining Status and Reachability of Network Hosts

	
	Network Outages

	
	Notifications

	
	Plugin Theory

	
	Service Check Scheduling

	
	State Types

	
	Time Periods

	
	Event Handlers

	
	External Commands

	
	Indirect Host and Service Checks

	
	Passive Host and Service Checks

	
	Volatile Services

	
	Service and Host Result Freshness Checks

	
	Distributed Monitoring

	
	Redundant and Failover Network Monitoring

	
	Detection and Handling of State Flapping

	
	Service Check Parallelization

	
	Notification Escalations

	
	Monitoring Service and Host Clusters

	
	Host and Service Dependencies

	
	State Stalking

	
	Performance Data

	
	Scheduled Downtime

	
	Using The Embedded Perl Interpreter

	
	Adaptive Monitoring

	
	Object Inheritance

	
	Time-Saving Tricks For Object Definitions

	
	UCD-SNMP (NET-SNMP) Integration

	
	TCP Wrapper Integration

	
	Securing Nagios

	
	Tuning Nagios For Maximum Performance

	
	Using The Nagiostats Utility

	
	Using Macros In Commands

	
	Information On The CGIs

	
	Custom CGI Headers and Footers

	
	Template-Based Object Configuration

	
	External Command File Permissions

	
	Extended Information Configuration

