
CVS – concurrent versions
system

Network Management Workshop
intERlab at AIT

Thailand
March 11-15, 2008

Overview – what is CVS ?

–CVS is a Version Control System (VCS)

Contents

● Part I
– version control and change managements
– introduction to CVS – principles, commands
– examples
– setting up a repository
– accessing the repository
– importing a project
– creating modules

Contents – cont'd

● Part II
– the CVSROOT/ directory and its files
– pre- and post- jobs
– the big picture: mail notifications, cvsweb, and

lists
– putting it all together
– automated scenarios

Overview – what is version
control

● Version control, and change management

– Keep track of changes (revisions)
– Share changes with others (public repository)
– Maintain multiple versions of a same set of data

(branches)

● What kind of data ?

– Source code
– Documentation
– Configuration files
– Binary data as well (less efficient)

CVS terminology
● repository

– Central, master copy containing all files being
versioned. Directory structured

● working copy
– Local copy of a project, checked out from a

repository. Contains special directories (CVS)
with information about which files are under CVS
control, where they files come from and where
they should be committed.

–

● module
– A set of directories, files or other modules under a

common “shortcut” name

CVS principles

● CVS uses a centralized “master copy”: the
repository

● All work is done in a working copy
● Changes are committed back to the repository
● Special directory, CVS

CVS – the repository

● CVS is a centralized VCS (1 repository)
● The repository contains files in the RCS

format, all ending in ' ,v '

● Each RCS file contains a complete history,
with changelog, of the file being versioned

● Well adapted to text files
● The repository is NEVER edited by hand
● A number of tools exist to analyze or browse

the repository
– cvsweb/webcvs

CVS – the repository

● Clients can access the repository locally or
over the network.

● The repository is indicated (UNIX) using the
CVSROOT environment variable:

● CVSROOT=
– /cvs/myprojects # local disk
– :pserver:myserver.com:/cvs/myprojects # via pserver
– :ext:user@myserver.com:/cvs/myprojects # via

SSH

● Allows for distributed work over LAN/WAN

CVS – example workflow

● Initial checkout
– cvs co projectname initial checkout
– vi filename ... work ...
– cvs commit [filename] record changes

● Later:
– cvs up update working copy

from repository
– vi filename ... work ...
– cvs commit [filename] record changes

CVS – example workflow –
cont'd

CVS clients

● Exist for most operating systems
– cvs command line (UNIX, Win32)
– TortoiseCVS – embeds in Explorer (Win32)
– WinCVS (Win32)
– ...

● Access the repository over the network or
locally

CVS commands – action
commands

● import
– import a new project into an existing repository

● checkout (co)
– check out a working copy of a project/file/module

from the repository

● update (up)
– update a working copy from the CVS version

● commit
– commit changes back to the repository (incl. new

files)

CVS commands – action
commands

cont'd
● add

– add a new file in the working copy, ready to
commit

● delete (del)
– remove a file from the working copy, ready to

commit

CVS command – status
commands

● status
– see the status and version of a given file or by

default all files

● diff
– show the difference between a given revision (by

default: the last one) of the named file and the file
in the working repository

● log
– show revision history for one or more files

A working example

% CVSROOT=:ext:server.name:/data/cvs
% export CVSROOT
% cvs co someproject
Password: *******
cvs server: Updating someproject
U dir/file1
U dir/file2
...
% ls -l dir/
-rwxr-xr-x 2 regnauld staff 512 Dec 20 15:44 CVS/
-rw-r--r-- 1 regnauld staff 1244 Nov 17 14:21 file1
-rw-r--r-- 1 regnauld staff 341 Dec 3 21:04 file2
...
% vi file1
...
% cvs commit file1

A working example – cont'd
...................... editor
/ Bugfix -- Modified file1 to fix bug /
\ \
/ CVS:-- /
\ CVS: Enter Log. Lines beginning with `CVS:' are \
/ CVS: removed automatically /
\ CVS: \
/ CVS: Modified Files: /
\ CVS: file1 \
/ CVS:-- /
\..\

/tmp/cvsUABnYm: 8 lines, 290 characters
Checking in file1;
/data/cvs/dir/file1,v <-- file1
new revision: 1.2; previous revision: 1.1
done
%

What's in the CVS/ directory ?

● Entries
– existing files, and newly added files

● Root
– where is the repository located

● Repository
– name of module or path in the repository

The CVS Id directive

● In an existing file, we add the following line

Id

● Now cvs commit the file, and look at the file
again

Setting up a new repository

● Anyone can create a repository, anywhere
● Done using the cvs init command
● Example:

– mkdir /data/cvsrepo
– export CVSROOT=/data/cvsrepo
– cvs [-d /data/cvsrepo] init
– ls -l /data/cvsrepo

drwxrwxr-x 3 pr staff 1024 Dec 20 15:45 CVSROOT/

Accessing the new repository

● Locally
– cvs -d /data/cvsrepo ...

● Not necessary to specify -d if CVSROOT is defined

● Remotely
– cvs -d :ext:servername:/data/cvsrepo ...
– SSH must be available!

● Ready for import!

Importing a new project...

% CVSROOT=/data/cvs; export CVSROOT
% cd someplace/myproject/
% cvs import my/new/project before_cvs start

 editor
/ Import pre-CVS version of my new project /
\ \
/ CVS:-- /
\ CVS: Enter Log. Lines beginning with `CVS:' are \
/ CVS: removed automatically /
\..\
N my/new/project/file1
N my/new/project/file2
...
No conflicts created by this import

%

Importing a new project...cont'd

● The location for this project in the repository
is now my/new/project, under the /data/cvs
repository i.e.:
– /data/cvs/my/new/project

● Let's test that we can check out the project:

% cvs co new/project
U my/new/project/file1
U my/new/project/file2
% cd my/new/project
% ls -l
...

Modules
● my/new/project is maybe too long as a project

name
● solution: modules, which are shorter names

for directories or groups of directories and
other modules.

● For example:
project my/new/project

● With such a module defined, it will be possible
to checkout, commit, etc... using the simple
name “project”

cvs -d :ext:/data/cvs co project
● We'll see how to define modules later.

The CVSROOT/ directory
● A default module is always created when one

inits a repository: CVSROOT
% cvs co CVSROOT
U CVSROOT/checkoutlist
U CVSROOT/commitinfo
U CVSROOT/config
U CVSROOT/cvswrappers
U CVSROOT/editinfo
U CVSROOT/loginfo
U CVSROOT/modules
U CVSROOT/notify
U CVSROOT/rcsinfo
U CVSROOT/taginfo
U CVSROOT/verifymsg

The CVSROOT/ directory –
cont'd

● Files described in cvs(5)
– man 5 cvs

● Most relevant:
– modules define modules
– commitinfo pre-commit scripts
– cvswrappers handle special files
– loginfo post-commit scripts

Pre- and post- jobs

● Using commitinfo and loginfo, it is possible to
have automatic jobs run before and after each
commit, for instance:

● pre-commit stage (commitinfo)
– verify that a user is allowed to modify a given file
– check syntax for a file
– ...

● post-commit stage (loginfo)
– send update as a mail
– append it to a log
– ...

The big picture: mail, cvsweb,
lists

Putting it all together...

CVS shortcomings

● symlinks and ownership of files are not
recorded

● no renaming of files (copy + delete)
● no changesets

– each file has 1 version, need postprocessing work
to
figure out “all files for this commit”

● no disconnected operation
– add, remove, commit, ... all need access to the

server

● branching/merging is quite complicated

Automated scenarios

● Idea: automatize configuration management
tasks so that configuration files are
automatically versioned using CVS...

● ... even when the sysadmin forgets :)

● Implementation – cron job
– look at all files in a given directory
– if they exist in the repository already -> commit
– if they don't, add, then commit

Automated scenarios – cont'd

● Already exists for network equipment:
RANCID
– http://www.shrubbery.net/rancid/

● Simple concept to implement for all relevant
files in /etc

● Subscribe all admins to the alias / mailing list,
so everyone receives a notification when a
change takes place – whether planned or not!

References

● http://www.nongnu.org/cvs/

● http://cvsbook.red-bean.com/

● http://www.tortoisecvs.org/

