Welcome!

APNIC DNS Workshop

18-22 February 2004, Kuala Lumpur, Malaysia

In conjunction with APRICOT 2004
Introduction

• Presenters
 – Champika Wijayatunga <champika@apnic.net>
 Senior Training Specialist
 – Arth Paulite <arth@apnic.net>
 Internet Resource Analyst
 – Srinivas Chendi <sunny@apnic.net>
 Internet Resource Analyst

• Invited Speaker
 – Bill Manning
Acknowledgements

- Bill Manning
- Olaf M. Kolkman
- Ed Lewis
- Joe Abley
Workshop Overview

• Wednesday, 18 February
 • DNS concepts I
 • DNS concepts II
 – TEA BREAK
 • BIND installation
 – LUNCH BREAK
 • Lab 1 – BIND Installation
 • Recursive Server
 – TEA BREAK
 • Lab 2 – Recursive Server
Workshop Overview

• Thursday, 19 February

 • Lab 3 – Configuring Domains
 - TEA BREAK

 • DNS Registries
 • Troubleshooting (dig, traceroute, nslookup, ethereal)
 - LUNCH BREAK

 • Lab 4 - Troubleshooting
 • Reverse DNS
 - TEA BREAK

 • Lab 5 – Reverse DNS
 • IPv6 reverse DNS
Workshop Overview

- Friday, 20 February
 - Access-lists
 - Lab 5a - Access-lists
 - TEA BREAK
 - Split DNS (Views)
 - Lab 5b – Split DNS (Views)
 - LUNCH BREAK
 - RNDC
 - Lab 6 – RNDC
 - TEA BREAK
 - TSIG
 - Lab 7 – TSIG
Workshop Overview

• Saturday, 21 February
 • Secured Dynamic Updates
 – TEA BREAK
 • Lab 8 – Secured Dynamic Updates
 – LUNCH BREAK
 • DNSSEC
 – TEA BREAK
 • Lab 9 – DNSSEC
Workshop Overview

• Sunday, 22 February
 • Creating the whole DNS hierarchy
 • Lab 10 - Creating the whole DNS hierarchy
Introduction to DNS
Purpose of naming

• Addresses are used to locate objects

• Names are easier to remember than numbers

• You would like to get to the address or other objects using a name

• DNS provides a mapping from names to resources of several types
Names and addresses in general

• An address is how you get to an endpoint
 – Typically, hierarchical (for scaling):
 • 950 Milton Street, Brisbane City, QLD 4064
 • 204.152.187.11, +617-3858-3188

• A “name” is how an endpoint is referenced
 – Typically, no structurally significant hierarchy
 • “David”, “Tokyo”, “apnic.net”
Naming History

• 1970’s ARPANET
 – Host.txt maintained by the SRI-NIC
 – pulled from a single machine
 – Problems
 • traffic and load
 • Name collisions
 • Consistency

• DNS created in 1983 by Paul Mockapetris (RFCs 1034 and 1035), modified, updated, and enhanced by a myriad of subsequent RFCs
DNS

- A lookup mechanism for translating objects into other objects
- A globally distributed, loosely coherent, scalable, reliable, dynamic database
- Comprised of three components
 - A “name space”
 - Servers making that name space available
 - Resolvers (clients) which query the servers about the name space
DNS Features: Global Distribution

• Data is maintained locally, but retrievable globally
 – No single computer has all DNS data

• DNS lookups can be performed by any device

• Remote DNS data is locally cachable to improve performance
DNS Features: Loose Coherency

- The database is always internally consistent
 - Each version of a subset of the database (a zone) has a serial number
 - The serial number is incremented on each database change

- Changes to the master copy of the database are replicated according to timing set by the zone administrator

- Cached data expires according to timeout set by zone administrator
DNS Features: Scalability

- No limit to the size of the database
 - One server has over 20,000,000 names
 - Not a particularly good idea

- No limit to the number of queries
 - 24,000 queries per second handled easily

- Queries distributed among masters, slaves, and caches
DNS Features: Reliability

• Data is replicated
 – Data from master is copied to multiple slaves

• Clients can query
 – Master server
 – Any of the copies at slave servers

• Clients will typically query local caches
DNS Features: Dynamicity

• Database can be updated dynamically
 – Add/delete/modify of any record

• Modification of the master database triggers replication
 – Only master can be dynamically updated
 • Creates a single point of failure
Concept: DNS Names

• The namespace needs to be made hierarchical to be able to scale.

• The idea is to name objects based on
 – location (within country, set of organizations, set of companies, etc)
 – unit within that location (company within set of company, etc)
 – object within unit (name of person in company)
Concept: DNS Names contd.

- How names appear in the DNS
 - Fully Qualified Domain Name (FQDN)
 - `WWW.APNIC.NET`
 - labels separated by dots

- DNS provides a mapping from FQDNs to resources of several types

- Names are used as a key when fetching data in the DNS
Concept: DNS Names contd.

- Domain names can be mapped to a tree
- New branches at the ‘dots’
Concept: Resource Records

- The DNS maps names into data using Resource Records.

More detail later

www.apnic.net. ... A 10.10.10.2
Concept: Domains

• Domains are “namespaces”

• Everything below `.com` is in the `com` domain

• Everything below `apnic.net` is in the `apnic.net` domain and in the `net` domain
Concept: Domains

apnic.net domain

com domain

net domain

apnic.net

domain

co

sun

tislab

moons

google

www

is

training

ns

ns

2

1
Delegation

- Administrators can create subdomains to group hosts
 - According to geography, organizational affiliation or any other criterion

- An administrator of a domain can delegate responsibility for managing a subdomain to someone else
 - But this isn’t required

- The parent domain retains links to the delegated subdomain
 - The parent domain “remembers” who it delegated the subdomain to
Concept: Zones and Delegations

- Zones are “administrative spaces”

- Zone administrators are responsible for portion of a domain’s name space

- Authority is delegated from a parent and to a child
Concept: Zones and Delegations

net domain

apnic.net zone

training.apnic.net zone

net zone

net

domain

apnic.net
zone

net
zone

training
ns1
ns2

www
ftp

edu
com

isi
sun
tislabs

moon

www

google
Concept: Name Servers

- Name servers answer ‘DNS’ questions

- Several types of name servers
 - Authoritative servers
 - master (primary)
 - slave (secondary)
 - (Caching) recursive servers
 - also caching forwarders
 - Mixture of functionality
• Authoritative name server
 – Give authoritative answers for one or more zones
 – The master server normally loads the data from a zone file
 – A slave server normally replicates the data from the master via a zone transfer
Concept: Name Servers contd.

- Authoritative name server
Concept: Name Servers contd.

• Recursive server
 – Do the actual lookups; ask questions to the DNS on behalf of the clients
 – Answers are obtained from authoritative servers but the answers forwarded to the clients are marked as not authoritative
 – Answers are stored for future reference in the cache
Concept: Resolvers

- Resolvers ask the questions to the DNS system on behalf of the application
- Normally implemented in a system library (e.g., libc)
Concept: Resolving process & Cache

Question: www.apnic.net A

Resolver

Caching forwarder (recursive)

192.168.5.10

www.apnic.net A?

Add to cache

root-server

www.apnic.net A?

Ask net server @ X.gtld-servers.net (+ glue)

gtld-server

www.apnic.net A?

Ask apnic server @ ns.apnic.net (+ glue)

apnic-server

www.apnic.net A?

192.168.5.10
Concept: Resource Records

- Resource records consist of its name, its TTL, its class, its type and its RDATA
- TTL is a timing parameter
- IN class is widest used
- There are multiple types of RR records
- Everything behind the type identifier is called rdata
Example: RRs in a zone file

apnic.net. 7200 IN SOA ns.apnic.net.
admin.apnic.net.
(2001061501 ; Serial
43200 ; Refresh 12 hours
14400 ; Retry 4 hours
345600 ; Expire 4 days
7200 ; Negative cache 2 hours)
apnic.net. 7200 IN NS ns.apnic.net.
apnic.net. 7200 IN NS ns.ripe.net.
whois.apnic.net. 3600 IN A 193.0.1.162
host25.apnic.net. 2600 IN A 193.0.3.25
Resource Record: SOA and NS

- The SOA and NS records are used to provide information about the zone itself.

- The NS indicates where information about a given zone can be found.

- The SOA record provides information about the start of authority, i.e. the top of the zone, also called the APEX.
Resource Record: SOA

```plaintext
net. 3600 IN SOA
A.GTLD-SERVERS.net. nstld.verisign-grs.com. (2002021301; serial
30M; refresh
15M; retry
1W; expiry
1D); neg.answ.ttl
```

- **Master server**: A.GTLD-SERVERS.net.
- **Contact address**: nstld.verisign-grs.com.
- **Version number**: 2002021301
- **Timing parameters**: 30M (refresh), 15M (retry), 1W (expiry), 1D (neg.answ.ttl)
Concept: TTL and other Timers

• TTL is a timer used in caches
 – An indication for how long the data may be reused
 – Data that is expected to be ‘stable’ can have high TTLs

• SOA timers are used for maintaining consistency between primary and secondary servers
Places where DNS data lives

- Changes do not propagate instantly

Might take up to ‘refresh’ to get data from master

Upload of zone data is local policy

Registry DB

Master

Slave

Slave server

Cache server

Not going to net if TTL>0
To remember...

- Multiple authoritative servers to distribute load and risk:
 - Put your name servers apart from each other

- Caches to reduce load to authoritative servers and reduce response times

- SOA timers and TTL need to be tuned to needs of zone. Stable data: higher numbers
What have we learned so far

• We learned about the architectures of
 – resolvers,
 – caching forwarders,
 – authoritative servers,
 – timing parameters

• We continue writing a zone file
Writing a zone file

- Zone file is written by the zone administrator.
- Zone file is read by the master server and its content is replicated to slave servers.
- What is in the zone file will end up in the database.
- Because of timing issues, it might take some time before the data is actually visible at the client side.
First attempt

• The ‘header’ of the zone file
 – Start with a SOA record
 – Include authoritative name servers and, if needed, glue
 – Add other information

• Add other RRs

• Delegate to other zones
The SOA record

apnic.net. 3600 IN SOA ns.apnic.net. admin\.email.apnic.net. (
 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. ttl

• admin.email@apnic.net ➔ admin\.email.apnic.net

• Serial number: 32bit circular arithmetic
 – People often use date format
 – To be increased after editing

• The timers above qualify as reasonable
Authoritative NS records and related A records

- NS record for all the authoritative servers
 - They need to carry the zone at the moment you publish
- A records only for “in-zone” name servers
 - Delegating NS records might have glue associated

```
apnic.net.    3600 IN NS  NS1.apnic.net.
apnic.net.    3600 IN NS  NS2.apnic.net.
NS1.apnic.net. 3600 IN A   203.0.0.4
NS2.apnic.net. 3600 IN A   193.0.0.202
```
Other data in the zone

- Add all the other data to your zone file
- Some notes on notation
 - Note the fully qualified domain name including trailing dot
 - Note TTL and CLASS

localhost.apnic.net. 3600 IN A 127.0.0.1
NS1.apnic.net. 4500 IN A 203.0.0.4
www.apnic.net. 3600 IN CNAME wasabi.apnic.net.
apnic.net. 3600 IN MX 50 mail.apnic.net.
Zone file format short cuts

nice formatting

```
apnic.net. 3600 IN SOA NS1.apnic.net.
admin\email.apnic.net. (2002021301 ; serial
1h ; refresh
30M ; retry
1W ; expiry
3600 ) ; neg. answ. Ttl

apnic.net. 3600 IN NS NS1.apnic.net.
apnic.net. 3600 IN NS NS2.apnic.net.
apnic.net. 3600 IN MX 50 mail.apnic.net.
apnic.net. 3600 IN MX 150 mailhost2.apnic.net.
apnic.net. 3600 IN TXT “Demonstration and test zone”
NS1.apnic.net. 4500 IN A 203.0.0.4
NS2.apnic.net. 3600 IN A 193.0.0.202
localhost.apnic.net. 3600 IN A 127.0.0.1
NS1.apnic.net. 3600 IN A 193.0.0.4
www.apnic.net. 3600 IN CNAME IN.apnic.net.
```
Zone file short cuts: repeating last name

apnic.net. 3600 IN SOA NS1.apnic.net. admin\email.apnic.net. (2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. Ttl

3600 IN NS NS1.apnic.net.
3600 IN NS NS2.apnic.net.

apnic.net. 3600 IN MX 50 mail.apnic.net.
apnic.net. 3600 IN MX 150 mailhost2.apnic.net.

3600 IN TXT "Demonstration and test zone"

NS1.apnic.net. 3600 IN A 203.0.0.4
NS2.apnic.net. 3600 IN A 193.0.0.202
localhost.apnic.net. 4500 IN A 127.0.0.1
NS1.apnic.net. 3600 IN A 203.0.0.4
www.apnic.net. 3600 IN CNAME IN.apnic.net.
Zone file short cuts: default TTL

$TTL 3600 ; Default TTL directive

apnic.net. IN SOA NS1.apnic.net. admin\email.apnic.net. (2002021301 ; serial
1h ; refresh
30M ; retry
1W ; expiry
3600) ; neg. answ. Ttl

IN NS NS1.apnic.net.
IN NS NS2.apnic.net.

apnic.net. IN MX 50 mail.apnic.net.
apnic.net. IN MX 150 mailhost2.apnic.net.

IN TXT “Demonstration and test zone”

NS1.apnic.net. IN A 203.0.0.4
NS2.apnic.net. IN A 193.0.0.202

localhost.apnic.net. 4500 IN A 127.0.0.1

NS1.apnic.net. IN A 203.0.0.4
www.apnic.net. IN CNAME NS1.apnic.net.
Zone file short cuts: ORIGIN

$TTL 3600 ; Default TTL directive
$ORIGIN apnic.net.
@ IN SOA NS1 admin\email.apnic.net. (2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. Ttl

IN NS NS1
IN NS NS2
apnic.net. IN MX 50 mailhost
apnic.net. IN MX 150 mailhost2

IN TXT "Demonstration and test zone"

NS1 IN A 203.0.0.4
NS2 IN A 193.0.0.202

localhost 4500 IN A 127.0.0.1

NS1 IN A 203.0.0.4
www IN CNAME NS1
Zone file short cuts: Eliminate IN

```dns
$TTL 3600 ; Default TTL directive
$ORIGIN apnic.net.
@       SOA NS1 admin\email.sanog.org. (2002021301 ; serial
         1h ; refresh
         30M ; retry
         1W ; expiry
         3600 ) ; neg. answ. TTL

NS  NS1
  apnic.net.
  MX 50  mailhost
apnic.net.  MX 150 mailhost2

TXT "Demonstration and test zone"

NS1  A   203.0.0.4
NS2  A   193.0.0.202
localhost 4500  A  127.0.0.1

NS1  A   203.0.0.4
www  CNAME NS1
```

Delegating a zone (becoming a parent)

- Delegate authority for a sub domain to another party (splitting of training.apnic.net from apnic.net)
Concept: Glue

• Delegation is done by adding NS records:

 training.apnic.net. NS ns1.training.apnic.net.
 training.apnic.net. NS ns2.training.apnic.net.
 training.apnic.net. NS ns1.apnic.net.
 training.apnic.net. NS ns2.apnic.net.

• How to get to ns1 and ns2... We need the addresses

• Add glue records to so that resolvers can reach ns1 and ns2

 ns1.training.apnic.net. A 10.0.0.1
 ns2.training.apnic.net. A 10.0.0.2
Concept: Glue contd.

- Glue is ‘non-authoritative’ data
- Don’t include glue for servers that are not in sub zones

```
training.apnic.net.     NS     ns1.training.apnic.net.
Training.apnic.net.     NS     ns2.training.apnic.net.
```

```
training.apnic.net.     NS     ns2.apnic.net.
training.apnic.net.     NS     ns1.apnic.net.
nsl1.training.apnic.net. A    10.0.0.1
Ns2.training.apnic.net. A    10.0.0.2
```

Only this record needs glue
Delegating training.apnic.net. from apnic.net.

training.apnic.net
• Setup minimum two servers
• Create zone file with NS records
• Add all training.apnic.net data

apnic.net
• Add NS records and glue
• Make sure there is no other data from the training.apnic.net. zone in the zone file
Questions ?