Introduction to Internet Mail

Philip Hazel

University of Cambridge
Mail agents

• MUA = Mail User Agent
• Interacts directly with the end user
 Pine, MH, Elm, mutt, mail, Eudora, Marcel, Mailstrom, Mulberry, Pegasus, Simeon, Netscape, Outlook, ...
• Multiple MUAs on one system - end user choice

• MTA = Mail Transfer Agent
• Receives and delivers messages
 Sendmail, Smail, PP, MMDF, Charon, Exim, qmail, Postfix, ...
• One MTA per system - sysadmin choice
From: Philip Hazel <ph10@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
Cc: Mark Anthony <MarkA@cleo.co.uk>
Subject: How Internet mail works

Julius,
 I'm going to be running a course on ...

• Format was originally defined by RFC 822 in 1982
• Now superseded by RFC 2822
• Message consists of
 Header lines
 A blank line
 Body lines
Message format (2)

- An address consists of a *local part* and a *domain*
 julius@ancient-rome.net

- A basic message body is unstructured

- Other RFCs (MIME, 2045) add additional headers which define structure for the body

- MIME supports attachments of various kinds and in various encodings

- Creating/decoding attachments is the MUA's job
Authenticating senders

• Embedded MUA uses inter-process call to send to MTA
 May use pipe, file, or internal SMTP over a pipe
 MTA knows the identity of the sender
 Normally inserts Sender: header if differs from From:

• Freestanding MUA uses SMTP to send mail
 MTA cannot easily distinguish local/remote clients
 No authentication in basic protocol
 AUTH command in extended SMTP
 Use of security additions (TLS/SSL)
 MUA can point at any MTA whatsoever
 Need for relay control
 Host and network blocks
A message in transit (1)

- **Headers added by the MUA before sending**

 From: Philip Hazel <ph10@cus.cam.ac.uk>
 To: Julius Caesar <julius@ancient-rome.net>
 cc: Mark Anthony <MarkA@cleo.co.uk>
 Subject: How Internet mail works
 Date: Fri, 10 May 2002 11:29:24 +0100 (BST)
 Message-ID: <Pine.SOL.3.96.990117111343.19032A-100000@taurus.cus.cam.ac.uk>
 MIME-Version: 1.0
 Content-Type: TEXT/PLAIN; charset=US-ASCII

Julius,

I'm going to be running a course on ...
A message in transit (2)

- Headers added by MTAs

```
Received: from taurus.cus.cam.ac.uk
    ([192.168.34.54] ident=exim)
    by mauve.csi.cam.ac.uk with esmtp
    (Exim 4.00) id 101qxX-00011X-00;
    Fri, 10 May 2002 11:50:39 +0100
Received: from ph10 (helo=localhost)
    by taurus.cus.cam.ac.uk with local-smtp
    (Exim 4.10) id 101qin-0005PB-00;
    Fri, 10 May 2002 11:50:25 +0100
From: Philip Hazel <ph10@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
cc: Mark Anthony <MarkA@cleo.co.uk>
...
A message in transit (3)

• A message is transmitted with an *envelope*:
  MAIL FROM:<ph10@cus.cam.ac.uk>
  RCPT TO:<julius@ancient-rome.net>

• The envelope is separate from the RFC 2822 message

• Envelope (RFC 2821) fields need not be the same as the header (RFC 2822) fields

• MTAs are (mainly) concerned with envelopes
  Just like the Post Office...

• Error ("bounce") messages have null senders
  MAIL FROM:<>

An SMTP session (1)

telnet relay.ancient-rome.net 25
220 relay.ancient-rome.net ESMTP Exim ...
EHLO taurus.cus.cam.ac.uk
250-relay.ancient-rome.net ...
250-SIZE 10485760
250-PIPELINING
250 HELP
MAIL FROM:<ph10@cus.cam.ac.uk>
250 OK
RCPT TO:<julius@ancient-rome.net>
250 Accepted
DATA
354 Enter message, ending with "."
Received: from ...
(continued on next slide)
An SMTP session (2)

From: ...
To: ...
etc...
.
250 OK id=10sPdr-00034H-00
quit
221 relay.ancient-rome.net closing conn...

SMTP return codes
  2xx  OK
  3xx  send more data
  4xx  temporary failure
  5xx  permanent failure
Email forgery

- It is trivial to forge unencrypted, unsigned mail

- This is an inevitable consequence when the sender and recipient hosts are independent

- It is less trivial to forge really well!

- Most SPAM usually contains some forged header lines

- Be alert for forgery when investigating
The Domain Name Service

- The DNS is a worldwide, distributed database
- DNS servers are called name servers
- There are multiple servers for each DNS zone
- Secondary servers are preferably off-site
- Records are keyed by type and domain name
- Root servers are at the base of the hierarchy
- Caching is used to improve performance
- Each record has a time-to-live field
Use of the DNS for email (1)

• Two DNS record types are used for routing mail

• *Mail Exchange* (MX) records map mail domains to host names, and provide a list of hosts with preferences:

  - hermes.cam.ac.uk. MX 5 green.csi.cam.ac.uk.
  - MX 7 ppsw3.csi.cam.ac.uk.
  - MX 7 ppsw4.csi.cam.ac.uk.

• *Address (A)* records map host names to IP addresses:

  - green.csi.cam.ac.uk. A 131.111.8.57
  - ppsw3.csi.cam.ac.uk. A 131.111.8.38
  - ppsw4.csi.cam.ac.uk. A 131.111.8.44
Use of the DNS for email (2)

- MX records were added to the DNS after its initial deployment

- Backwards compatibility rule:
  If no MX records found, look for an A record, and if found, treat as an MX with 0 preference

- MX records were invented for gateways to other mail systems, but are now heavily used for handling generic mail domains
Other DNS records

- The PTR record type maps IP addresses to names
  57.8.111.131.in-addr.arpa.
  PTR green.csi.cam.ac.uk.

- PTR and A records do not have to be one-to-one
  ppsw4.cam.ac.uk.   A   131.111.8.33
  33.8.111.131.in-addr.arpa.
  PTR lilac.csi.cam.ac.uk.

- CNAME records provide an aliasing facility
  pelican.cam.ac.uk.
  CNAME redshank.csx.cam.ac.uk.
DNS lookup tools

- *host* is easy to use for simple queries
  
  ```
 host demon.net
 host 192.168.34.135
 host -t mx demon.net
  ```

- *nslookup* is more widely available, but is more verbose
  
  ```
 nslookup bt.net
 nslookup 192.168.34.135
 nslookup -querytype=mx bt.net
  ```

- *dig* is the ultimate nitty-gritty tool
  
  ```
 dig bt.net
 dig -x 192.158.34.135
 dig bt.net mx
  ```
DNS mysteries

- Sometimes primary and secondary name servers get out of step

- When mystified, check for server disagreement
  ```
 host -t ns ioe.ac.uk
 ioe.ac.uk NS mentor.ioe.ac.uk
 ioe.ac.uk NS ns0.ja.net
  ```
  ```
 host mentor.ioe.ac.uk mentor.ioe.ac.uk
 mentor.ioe.ac.uk A 144.82.31.3
  ```
  ```
 host mentor.ioe.ac.uk ns0.ja.net
 mentor.ioe.ac.uk has no A record at
 ns0.ja.net (Authoritative answer)
  ```
Common DNS errors

- Final dots missing on RHS host names in MX records
- MX records point to aliases instead of canonical names
  This should work, but is inefficient and deprecated
- MX records point to non-existent hosts
- MX records contain an IP address instead of a host name on the right-hand side
  Unfortunately some MTAs accept this
- MX records do not contain a preference value
- Some broken name servers give a server error when asked for a non-existent MX record
Routing a message

- Process local addresses
  - Alias lists
  - Forwarding files

- Recognize special remote addresses
  - e.g. local client hosts

- Look up MX records for remote addresses

- If self in list, ignore all MX records with preferences greater than or equal to own preference

- For each MX record, get IP address(es)
Delivering a message

• Perform local delivery

• For each remote delivery
  Try to connect to each remote host until one succeeds
  If it accepts or permanently reject the message, that's it

• After temporary failures, try again at a later time

• Time out after deferring too many times

• Addresses are often sorted to avoid sending multiple copies
Checking incoming senders

- A lot of messages are sent with bad envelope senders
  Mis-configured mail software
  Unregistered domains
  Mis-configured name servers
  Forgers

- Forgery seems to be the largest category nowadays

- Many MTAs check the sender's domain

- It is harder to check the local part
  Uses more resources, and can be quite slow

- Bounce messages have no envelope sender
Checking incoming recipients

- Some MTAs check each local recipient during the SMTP transaction
  Errors are handled by the *sending* MTA
  The receiving MTA avoids problems with bad senders

- Other MTAs accept messages without checking, and look at the recipients later
  Errors are handled by the *receiving* MTA
  More detailed error messages can be generated

- The current proliferation of forged senders has made the first approach much more popular
Relay control

- **Incoming:** From any host to specified domains
e.g. incoming gateway or backup MTA

- **Outgoing:** From specified hosts to anywhere
  e.g. outgoing gateway on local network

- From authenticated hosts to anywhere
  e.g. travelling employee or ISP customer connected to remote network

- Encryption can be used for password protection during authentication

- Authentication can also be done using certificates
Policy controls on incoming mail

• Block known miscreant hosts and networks
  Realtime Blackhole List (RBL), Dial-up list (DUL), etc.
  [http://mail-abuse.org](http://mail-abuse.org) (now a charged service) and others

• Block known miscreant senders
  Not as effective as it once was for SPAM

• Refuse malformed messages

• Recognize junk mail
  Discard
  Annotate