DNS Session 3: Configuration of Authoritative Nameservice

Recap

- DNS is a distributed database
- Resolver asks Cache for information
- Cache traverses the DNS delegation tree to find Authoritative nameserver which has the information requested
- Bad configuration of authoritative servers can result in broken domains

DNS Replication

- For every domain, we need more than one authoritative nameserver with the same information (RFC 2182)
- Data is entered in one server (Master) and replicated to the others (Slave(s))
- Outside world cannot tell the difference between master and slave
 - NS records are returned in random order for equal load sharing
- Was called “primary” and “secondary”

Slaves connect to Master to retrieve copy of zone data

- The master does not ‘push’ data to the slaves

When does replication take place?

- Slaves poll the master periodically - called the "Refresh Interval" - to check for new data
 - Originally this was the only mechanism
- With new software, master can also notify the slaves when the data changes
 - Results in quicker updates
- The notification is unreliable (e.g. network might lose a packet) so we still need checks at the Refresh Interval

Serial Numbers

- Every zone file has a Serial Number
- Slave will only copy data when this number INCREASES
 - Periodic UDP query to check Serial Number
 - If increased, TCP transfer of zone data
- It is your responsibility to increase the serial number after every change, otherwise slaves and master will be inconsistent
Recommended serial number format: YYYYMMDDNN

- YYYY = year
- MM = month (01-12)
- DD = day (01-31)
- NN = number of changes today (00-99)
 - e.g. if you change the file on 3rd March 2004, the serial number will be 200403000. If you change it again on the same day, it will be 200403001

Serial Numbers: Danger 1

- If you ever decrease the serial number, the slaves will never update again until the serial number goes above its previous value
- RFC1912 section 3.1 explains how to fix this problem
- At worst, you have to contact all your slaves and get them to delete their copy of the zone data

Serial Numbers: Danger 2

- Serial no. is a 32-bit unsigned number
- Range: 0 to 4,294,967,295
- Any value larger than this is silently truncated
- e.g. 20040303000 (note extra digit)
 - \(\Rightarrow \) 4AA7EC198 (hex)
 - \(\Rightarrow \) AA7EC198 (32 bits)
 - \(\Rightarrow \) 2860433816
- If you make this mistake, then correct it, the serial number will have decreased

Configuration of Master

- /etc/named_conf points to zone file (manually created)
- Choose a logical place to keep them
 - e.g. /var/named/m/tiscal.co.uk
 - or /var/named/m/uk.co.tiscal

```bash
zone "example.com" {
    type master;
    file "m/example.com";
    allow-transfer { 192.188.58.126; 192.188.58.2; }
};
```

Configuration of Slave

- /etc/named.conf points to IP address of master and location of zone file
- Zone files are transferred automatically
 - Don't touch them

```bash
zone "example.com" {
    type slave;
    masters { 192.188.58.126; }
    file "s/example.com";
    allow-transfer { none; }
};
```

Master and Slave

- It's perfectly OK for one server to be Master for some zones and Slave for others
- That's why we recommend keeping the files in different directories
 - /var/named/m/
 - /var/named/s/
allow-transfer { ... }

- Remote machines can request a transfer of the entire zone contents
- By default, this is permitted to anyone
- Better to restrict this
- You can set a global default, and override this for each zone if required

```c
options {
    allow-transfer ( 127.0.0.1; );
};
```

Structure of a zone file

- Global options
 - `@TTL 1d`
 - Sets the default TTL for all other records
- SOA RR
 - "Start Of Authority"
 - Housekeeping information for the zone
- NS RR
 - List all the nameservers for the zone, master and slaves
- Other RR
 - The actual data you wish to publish

Format of a Resource Record

- `www 3600 IN A 212.74.112.80`

Format of the SOA record

- `www.example.com. 86400 IN SOA (...) example.com. 86400 IN NS ns0.example.com. example.com. 86400 IN NS ns0.example.com. example.com. 86400 IN NS ns0.as9105.net. example.com. 86400 IN NS ns2.example.com. example.com. 86400 IN NS ns1.example.net. example.com. 86400 IN NS ns1.example.net. example.com. 86400 IN A 212.74.112.80 example.com. 86400 IN MX 10 mail.example.com.`

If you write this... $TTL 1d

```c
@ 1h IN SOA nsl.example.net. brian.nsro.org. ( 2004030300 ; Serial 8h ; Refresh 1h ; Retry 4w ; Expire 1h ) ; Negative
IN NS nsl.example.net.
IN NS nsl.example.net.
IN NS nsl.as9105.net.
```

... it becomes this

```c
example.com. 86400 IN SOA ( ... ) example.com. 86400 IN NS nsl.example.net.
example.com. 86400 IN NS nsl.example.net.
example.com. 86400 IN NS nsl.as9105.net.
www.example.com. 86400 IN A 212.74.112.80
www.example.com. 86400 IN MX 10 mail.example.com.
```
Format of SOA record

- ns1.example.net
 → hostname of master nameserver
- brian.nsrc.org.
 → E-mail address of responsible person, with "@" changed to dot
- Serial number
- Refresh interval
 → How often Slave checks serial number on Master
- Retry interval
 → How often Slave checks serial number if the master did not respond

Format of NS records

$TTL 1d
@ 1h IN SOA ns1.example.net. brian.nsrc.org. (2004030300 ; Serial
8h ; Refresh
1h ; Retry
4w ; Expire
1h) ; Negative

IN NS ns1.example.net.
IN NS ns1.example.net.
IN NS ns1.othernetwork.com.

- List all authoritative nameservers for the zone - master and slave(s)
- Must point to HOSTNAME not IP address

Format of other RRs

- IN A 1.2.3.4
- IN MX 10 mailhost.example.com.
 → The number is a "preference value". Mail is delivered to the lowest-number MX first
 → Must point to HOSTNAME not IP address
- IN CNAME host.example.com.
- IN PTR host.example.com.
- IN TXT "any text you like"

When you have added or changed a zone file:

- Check the serial number!
- named-checkzone example.com
 → bind 9 feature
 → reports syntax errors; correct them!
- rndc reload
 → or: rndc reload example.com
- tail /var/log/messages

These checks are ESSENTIAL

- If you have an error in named.conf or a zone file, named will continue to run but not authoritative for the bad zone(s)
- You will be lame for the zone without realising it
- Slaves will not be able to contact the master
- Eventually (e.g. 4 weeks later) the slaves will expire the zone
- Your domain will stop working
Other checks you can do

- `dig +nored +norec @x.x.x x example.com. soa`
 - Check the AA flag
 - Check the master and all the slaves
 - Check the serial numbers match
- `dig @x.x.x.x example.com. axfr`
 - "Authority Transfer"
 - Requests a full copy of the zone contents over TCP, as slaves do to master
 - This will only work from IP addresses listed in the allow-transfer {...} section

So now you have working authoritative nameservers!

- But remember that none of this will work until you have delegation from the domain above
- That is, they put in NS records for your domain, pointing at your nameservers
- You have also put NS records within the zone file
- The two sets should match

TOP TEN ERRORS in authoritative nameservers

- All operators of auth nameservers should read RFC 1912
 - Common DNS Operational and Configuration Errors
- See also RFC 2182
 - Selection and Operation of Secondary DNS Servers

1. Serial number errors

- Forgot to increment serial number
- Incremented serial number, and then decremented it
- Used serial number greater than 2^32
- Impact:
 - Slaves do not update
 - Master and slaves have inconsistent data
 - Caches will sometimes get the new data and sometimes old - intermittent problem

2. Comments in zone files starting '#' instead of ';'

- Syntax error in zone file
- Master is no longer authoritative for the zone
- Slaves cannot check SOA
- Slaves eventually expire the zone, and your domain stops working entirely
- Use 'named-checkzone'
- Use 'tail /var/log/messages'

3. Other syntax errors in zone files

- e.g. omitting the preference value from MX records
- Same impact
4. Missing the trailing dot

```
; zone example.com.
@  IN  MX 10  mailhost.example.com
becomes
@  IN  MX 10  mailhost.example.com.example.com.
```

```
; zone 2.0.192.in-addr.arpa.
1  IN  PTR  host.example.com
becomes
1  IN  PTR  host.example.com.2.0.192.in-addr.arpa.
```

5. NS or MX records pointing to IP address

- They must point to hostnames, not IP addresses
- Unfortunately a few mail servers do accept IP addresses in MX records, so you may not see a problem with all remote sites

6. Slave cannot transfer zone from master

- Access restricted by allow-transfer {...} and slave not listed
- Or IP filters not configured correctly
- Slave will be lame (non-authoritative)

7. Lame delegation

- You cannot just list any nameserver in NS records for your domain
- You must get agreement from the nameserver operator and they must configure it as a slave for your zone
- At best: slower DNS resolution and lack of resilience
- At worst: intermittent failures to resolve your domain

8. No delegation at all

- You can configure "example.com" on your nameservers but the outside world will not send requests to them until you have delegation
- The problem is hidden if your nameserver is acting both as your cache and as authoritative nameserver
- Your own clients can resolve www.example.com, but the rest of the world cannot

9. Out-of-date glue records

- See later
10. Not managing TTL correctly during changes

➤ e.g. if you have a 24 hour TTL, and you swing www.example.com to point to a new server, then there will be an extended period when some users hit one machine and some hit the other
➤ Follow the procedure:
 → Reduce TTL to 10 minutes
 → Wait at least 24 hours
 → Make the change
 → Put the TTL back to 24 hours

Final topics

➤ Reverse DNS
➤ How to delegate a subdomain

How to manage reverse DNS

➤ If you have at least a /24 of address space then your provider will arrange delegation to your nameservers
➤ e.g. your netblock is 192.0.2.0/24
➤ Set up zone 2.0.192.in-addr.arpa.
➤ If you have more than a /24 then each /24 will be a separate zone
➤ If you are lucky enough to have a /16 then it will be a single zone
 → 172.16.0.0/16 is 16.172.in-addr.arpa.

Example: 192.0.2.0/24

zone "2.0.192.in-addr.arpa" {
 type master;
 file "m/192.0.2";
 allow-transfer { ... };
};

/var/named/m/192.0.2
@ IN SOA
IN NS ns0.example.com.
IN NS ns0.othernetwork.com.
1 IN PTR router-e0.example.com.
2 IN PTR ns0.example.com.
3 IN PTR mailhost.example.com.
4 IN PTR www.example.com.
; etc

How it works

➤ e.g. for 192.0.2.4, the remote host will lookup 4.2.0.192.in-addr.arpa. (PTR)
➤ The query follows the delegation tree as normal. If all is correct, it will reach your nameservers and you will reply
➤ Now you can see why the octets are reversed
 → The owner of a large netblock (192/8) can delegate reverse DNS in chunks of /16. The owner of a /16 can delegate chunks of /24
There is nothing special about reverse DNS

- You still need master and slave(s)
- It won't work unless you get delegation from above
- DO make sure that if you have PTR records for an IP address, that the hostname resolves back to the same IP address
 - Otherwise many sites on the Internet will believe you are spoofing reverse DNS and will refuse to let you connect

What if you have less than /24?

- Reverse DNS for the /24 has been delegated to your upstream provider
- Option 1: ask your provider to insert PTR records into their DNS servers
 - Problem: you have to ask them every time you want to make a change
- Option 2: follow the procedure in RFC2317
 - Uses a trick with CNAME to redirect PTR requests for your IPs to your nameservers

e.g. You own 192.0.2.64/29

```plaintext
; In the provider's 2.0.192.in-addr.arpa zone file
64 IN CNAME 64.64/29.2.0.192.in-addr.arpa.
65 IN CNAME 65.64/29.2.0.192.in-addr.arpa.
66 IN CNAME 66.64/29.2.0.192.in-addr.arpa.
67 IN CNAME 67.64/29.2.0.192.in-addr.arpa.
68 IN CNAME 68.64/29.2.0.192.in-addr.arpa.
69 IN CNAME 69.64/29.2.0.192.in-addr.arpa.
70 IN CNAME 70.64/29.2.0.192.in-addr.arpa.
71 IN CNAME 71.64/29.2.0.192.in-addr.arpa.
64/29 IN NS ns0.customer.com.
64/29 IN NS ns1.customer.com.

Set up zone "64.29.2.0.192.in-addr.arpa" on your nameservers
66 IN PTR mailhost.customer.com.
; etc
```

How do you delegate a subdomain?

- In principle straightforward: just insert NS records for the subdomain, pointing at someone else's servers
- If you are being careful, you should first *check* that those servers are authoritative for the subdomain
 - using "dig" on all the servers
- If the subdomain is managed badly, it reflects badly on you!

Zone file for "example.com"

```plaintext
$TTL 1d
@ 1h IN SOA nsl.example.net. brian.nsrc.org. (2004031500 ; Serial
                          8h            ; Refresh
                          1h            ; Retry
                          4w            ; Expire
                          1h )            ; Negative
                          IN NS nsl.example.net.
                          IN NS ns2.example.net.
                          IN NS nsl.othernet.com.

; My own zone data
  IN MX 10 mailhost.example.net.
  www  IN A 212.74.312.80

; A delegated subdomain
  subdom IN NS nsl.othernet.net.
  IN NS ns2.othernet.net.
```
In this case you need "glue"

- A "glue record" is an A record for the nameserver
- Example: consider the .com nameservers

 ; this is the com. zone
 example NS ns.example.com.
 NS ns.othernet.net.

 ns.example.com. A 192.0.2.1 ; GLUE RECORD

Example where a glue record IS needed

; My own zone data
 IN MX 10 mailhost.example.net.
 www IN A 212.74.112.80

; A delegated subdomain
 subdom IN NS ns1.subdom ; needs it
 IN NS ns2.othernet.net. ; doesn't
 ns1.subdom IN A 192.0.2.4

Checking for glue records

- dig +noredc @a.gtld-servers.net. www.as9105.net. a
- Look for A records in the "Additional" section whose TTL does not count down

 $ dig +norec @a.gtld-servers.net. www.as9105.net. a

 ;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADD’L: 1
 ;; QUERY SECTION:
 ;; www.as9105.net. type = A, class = IN

 ;; AUTHORITY SECTION:
 as9105.net. 2D IN NS ns0.as9105.com.
 as9105.net. 2D IN NS ns0.tiscali.co.uk.

 ;; ADDITIONAL SECTION:
 ns0.as9105.com. 2D IN A 212.139.129.130

DNS: overall summary

- Distributed database of RRs
- Three roles: resolver, cache, authoritative
- Resolver statically configured with the nearest cache(s)
 → e.g. /etc/resolv.conf
- Caches statically configured with a list of root nameservers
 → zone type "hint", /var/named/named.ca

DNS: overall summary (cont)

- Root nameservers contain delegations (NS records) to gtld or country-level servers (com, uk etc)
- Further delegations to subdomains
- Cache finally locates an authoritative server containing the RRs we require
- Errors in delegation or in configuration of authoritative servers result in no answer or inconsistent answers