Reverse DNS
Presented by Joe Abley
SANOG 4, 2004

Outline
- General introduction
- IPv4 reverse DNS
 - Revere mapping and relation to address allocation
 - Problems and solutions for reverse mapping
- IPv6 reverse DNS

Addresses in the DNS
- Mapping from numbers to names
 - It is just ordinary DNS
 - No different standards
 - No different operation
 - But you might need a little background
 - There are some conventions
 - IPv6 is a moving/developing target
 - First IPv4

Mapping of addresses to reverse
- Mapping from names to addresses is common:
 - bert.secret-wg.org A 193.0.0.4
- Sometimes one wants to know which name comes with a given address. If you can translate the address to a FQDN one can use the DNS
- Design goal: Delegate maintenance of the reverse DNS to the owner of the address block

Mapping the IPv4 address into the DNS: address allocation
- Address allocation is hierarchical:
 - blocks of addresses are allocated to LIRs/ISP
 - smaller blocks are allocated to client
 - clients will assign address blocks to end users
- Routing is based on destinations for given address blocks
 - Historically on 8 bit boundaries (Class A,B,C)
 - Classless Inter Domain Routing (CIDR)

Classless inter domain routing (CIDR)
- Routing table size (router memory) is a limited resource
- Goal of CIDR: aggregate many small address block into one larger block

192.168.0/22
ISP
internet
Aggregated route

Customer
192.168.1/24

Customer
192.168.2/24

Customer
192.168.3/24
Mapping the IPv4 address into the DNS: address blocks

- Address block notation: `<address>/<number of significant bits>`

 For instance:

 193.0.0.0/8 or short 193/8

 193.165.64/19 = 0xc1a54000/19 =

 1100 0001 1001 0101 0010 0000 0000 0000

 19 bits

IPv4 address format

- An IP address is a 4 byte number normally represented by the decimal representation of the 4 bytes separated by dots

 0xC1000004

 193.0.0.4

 With allocation on 8 bit boundaries this leads to a simple delegation scheme

Mapping the IPv4 address into the DNS

- Example 192.26.1.3

 - 192/8 is allocated to a RIR

 - 192.26/16 is allocated by RIR to LIR/ISP

 - 192.26.1/24 is assigned by ISP to a company.

 Delegation in the DNS:

 - root delegates 192 domain to RIR

 - RIR delegates “26” sub-zone to ISP

 - ISP delegates “1” sub-zone to company.

 Name that makes this possible: 1.26.192

Mapping addresses to names

- Revert the decimal representation:

 192.26.1.3 maps to 3.1.26.192 and put this under a top level domain.

 - For IPv4 this TLD is in-addr.arpa

 - In the DNS one publishes PTR records to point back to the name:

 4.0.0.193.in-addr.arpa 3600 IN PTR bert.secret-wg.org.

The reverse tree

Outline

- General introduction
- IPv4 reverse DNS

 - Revert mapping and relation to address allocation

 - Problems and solutions for reverse mapping

 - IPv6 reverse DNS
Mapping address to names: mapping problems

- In IPv4 the mapping is done on 8 bit boundaries (class full), address allocation is class less
- Zone administration does not always overlap address administration
- If you have a /19 of address space: divide it in /24s and request a delegation for each one of them as soon as you use the address space
- /25 and smaller we will cover later

Setting your reverse zones

- The reverse zone file is a regular zone file.
 - SOA and NS RRs in the APEX
 - Mostly PTR records in the zone itself
 - Make sure the zone is served by the masters and slaves
 - Bind9 has a $GENERATE directive that might be handy

A reverse zone example

```text
$ORIGIN 1.168.192.in-addr.arpa.
@ 3600 IN SOA bert.secret-wg.org. ( olaf.kolkman.ripe.net. 2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600 ) ; neg. answ. ttl
NS ns.secret-wg.org.
NS ns2.secret-wg.org.
1 PTR gw.secret-wg.org.
   router.secret-wg.org.
2 PTR ns.secret-wg.org.
   : BND9 auto generate: 65 PTR host65.secret-wg.org
$GENERATE 65-127 $ PTR host$.secret-wg.org.
Note trailing dots
```

Whois domain object

```
admin-c: DNS3-AP
tech-c: DNS3-AP
zone-c: DNS3-AP
nserver: ns.telstra.net
nserver: rs.arin.net
nserver: ns.myapnic.net
nserver: svc00.apnic.net
nserver: ns.apnic.net
mnt-by: MAINT-APNIC-AP
mnt-lower: MAINT-DNS-AP
changed: inaddr@apnic.net 19990810
source: APNIC
```

Allocations smaller than /24

- Imagine a /25 address block delegated to a company by an ISP
- The company wants to maintain the reverse mapping of the address they use
- In the reverse DNS one can not delegate
- Use the 'classless inaddr' technique described in RFC 2317
- Based on the use of CNAME RRs
 - CNAME provide a means to alias names to another namespace
RFC2317 explained (1)

- 192.0.2.0/25 to organization A
- 192.0.2.128/26 to organization B and
- 192.0.2.192/26 to organization C

```
$ORIGIN 2.0.192.in-addr.arpa.
@ IN SOA my-name-my-domain. [hostmaster.my-domain.
[...]
@ NS ns1.organizationA.com.
1 CNAME 1.orgA
2 CNAME 2.orgA
@ NS ns2.organizationA.com.
129 CNAME 129.orgB
130 CNAME 130.orgB
```

RFC2317 explained (2)

- Generate a 'sub domain' for each address block and delegate these to the children
- Name the sub domain after the address block
 - 0/25, 128/26, and 190/26
 - 0-127, 128-189, 190-255
 - orgA, orgB, orgC

- For each name in the zone create a CNAME that points into the delegated namespace e.g.:

```
1 CNAME 1.orgA.2.0.193.inaddr-arpa.
```

RFC2317 explained (3)

Parent zone

```
$ORIGIN 2.0.192.in-addr.arpa.
@ IN SOA my-name-my-domain. [hostmaster.my-domain.
[...]
@ NS ns1.organizationA.com.
1 CNAME 1.orgA
2 CNAME 2.orgA
@ NS ns2.organizationA.com.
129 CNAME 129.orgB
130 CNAME 130.orgB
```

RFC2317 explained (4)

Children’s zone

```
$ORIGIN orgA.2.0.192.in-addr.arpa.
@ IN SOA ns1.organizationA.com. [hostmaster.organizationA.com.
[...]
@ NS ns1.organizationA.com.
1 NS ns2.organizationA.com.
2 NS ns2.organizationA.com.
129 PTR host1.organizationA.com.
130 PTR host2.organizationA.com.
```

RFC2317 explained (5)

- You could also delegate to a forward zone
- Eases maintaining consistency in mapping

```
$ORIGIN 1.168.192.in-addr.arpa.
@ IN SOA www.192.168.1.24
24 CNAME in24.foo.net.
25 CNAME in25.foo.net.
26 CNAME in26.foo.net.
27 CNAME in27.foo.net.
28 CNAME in28.foo.net.
```

Outline

- General introduction
- IPv4 reverse DNS
- IPv6 reverse DNS
- IPv6 addresses
- IPv6 in the forward tree
- IPv6 in the reverse tree
IPv6 addresses

- **128 bits**
 - 64 low order bits “host” identifier
 - e.g. a mapping of the hosts’ Ethernet address
 - 64 high order bits “network” identifier
 - Further subdivision inside network id.
- Let’s look at notation first, then at further subdivision

IPv6 address Notation

- 16 bit integers (in Hex) separated by colons
 - 1080:0000:0000:0000:0008:0800:200C:417A
- Leading zeros can be skipped
 - 1080:0:0:0:8:800:200C:417A
- Consecutive NULL 16-bit numbers → “::”
 - 1080::8:800:200C:417A

IPv6 addresses

- For globally routable unicast addresses the 1st 3 bits are set to “001”
- Unicast addresses are further subdivided in “aggregates”
- More address classes available like:
 - Link local: fe80/10
 - Multicast: ff00/8
 - Mapped IPv4 address: 0::ffff:0:0:0:0/96

Globally routable unicast addresses

- 1st 3 bits are format prefix
- last 16 bits of network ID are used for ‘sites’
- /48 assigned to end-users.
- RIRs minimum allocation size: /32 blocks
- The policy still moving target

Outline

- General introduction
 - IPv4 reverse DNS
 - IPv6 reverse DNS
 - IPv6 addresses
 - IPv6 in the forward tree
 - IPv6 in the reverse tree

IPv6 address representation in the DNS

- Multiple RR records for name to number
 - AAAA
 - A6 (Deprecated)
- Multiple ways to map address to DNS name
 - nibble notation
 - bit strings and nibbles (Deprecated)
AAAA RR

- Name to number mapping
- Similar to A RR for IPv4
- Uses the ‘common’ representation of the address

$ORIGIN example.com.

Outline

- General introduction
- IPv4 reverse DNS
- IPv6 reverse DNS
 - IPv6 addresses
 - IPv6 in the forward tree
 - IPv6 in the reverse tree
 - nibbles in ip6.arpa

Reverse DNS

- Just as with IPv4 the responsibility for maintaining the reverse map can be delegated through the address hierarchy
- Number is translated into 4 bit nibbles under the ip6.arpa (ip6.int) TLD.
 2001:0238::a00:46ff:fe06:1460 maps to:
 0.6.4.1.6.0.e.f.f.6.4.0.0.a.0.0.0.0.0.0.0.0.8.3.2.0.1.0.0.2.ip6.arpa.

Setting up reverse for SUB TLA

- Remember initial allocation is /32

FP | /35 allocations |
| 3 | /32 |
| |------------------|------------------|
| 001000000000000000010000010001110000000? |
| 35 bits |------------------|
2 0 0 1: 0 2 3 8 0/35

- Delegation for two /36
 0.8.3.2.0.1.0.0.2.ip6.arpa
 1.8.3.2.0.1.0.0.2.ip6.arpa

Can be 1 or 0

DNS data and the transport layer

- In principle the transport layer does not have influence on DNS data;
 - Data can be published by servers running on IPv4 or IPv6, content should not differ
 - Transition problem: IPv6 client might not be able to see IPv6 servers and vice versa
 - Transition problems are by far not solved
- Exception to above: IPv4 mapped addresses
 - Mapping is depended on OS libraries
Questions

- Let's do it.....