Introduction to Internet Mail

Philip Hazel

University of Cambridge Computing Service

Mail agents

- MUA = Mail User Agent
- Interacts directly with the end user
 - Pine, MH, Elm, mutt, mail, Eudora, Mulberry, Pegasus,
 Netscape, Outlook, ...
- Multiple MUAs on one system – end user choice
- MTA = Mail Transfer Agent
- Receives and delivers messages
 - Sendmail, Smail, MMDF, Charon, Exim, qmail, Postfix, ...
- One MTA per system – sysadmin choice
From: Philip Hazel <ph10@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
Cc: Mark Anthony <MarkA@cleo.co.uk>
Subject: How Internet mail works

Julius,
 I’m going to be running a course on ...

- Format was originally defined by RFC 822 in 1982
- Now superseded by RFC 2822 (published 2001)
- Message consists of
 - Header lines – some have a well-defined syntax
 - A blank line – terminates the end of the header
 - Body lines
- Notice that a message is defined in terms of *lines*

An email address consists of a *local part* and a *domain*

```
julius@ancient-rome.net
```

```
  ↑            ↑
local part    domain
```

- A basic message body is unstructured ASCII text
- Other RFCs (MIME, 2045) add additional header lines that define structure for the body
- MIME supports attachments of various kinds and in various encodings
- Creating/decoding attachments is the MUA’s job
Authenticating senders

- Embedded MUA uses inter-process call to send to MTA
 - May use pipe, file, or internal SMTP over a pipe
 - MTA know the identity of the sender
 - Normally inserts *Sender:* header if it differs from *From:*

- Freestanding MUA uses SMTP to send mail
 - MTA cannot easily distinguish local/remote clients
 - No authentication in basic SMTP protocol
 - AUTH command in extended SMTP
 - Use of security additions (TLS/SSL)
 - MUA can point at any MTA whatsoever
 - Need for relay control
 - Host and network blocks
A message in transit (1)

- Headers added by the MUA before sending

```
From: Philip Hazel <ph10@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
Cc: Mark Anthony <MarkA@cleo.co.uk>
Subject: How Internet mail works
Date: Mon, 10 May 2004 11:29:24 +0100 (BST)
Message-ID: <Pine.SOL.3.96.990117111343.19032A-100000@taurus.cus.cam.ac.uk>
MIME-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII
```

Julius,

I’m going to be running a course on ...

A message in transit (2)

- Headers added by MTAs

```
Received: from taurus.cus.cam.ac.uk
([192.168.34.54] ident=exim)
by mauve.csi.cam.ac.uk with esmtp
(Exim 4.30) id 101qxX-00011X-Ab;
Mon, 10 May 2004 11:50:39 +0100
Received: from ph10 (helo=localhost)
by taurus.cus.cam.ac.uk with local-smtp
(Exim 4.31) id 101qin-0005PB-2c;
Mon, 10 May 2004 11:50:25 +0100
From: Philip Hazel <ph10@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
Cc: Mark Anthony <MarkA@cleo.co.uk>
Subject: How Internet mail works
Date: Mon, 10 May 2004 11:29:24 +0100 (BST)
...```
A message in transit (3)

- A message is transmitted with an *envelope*:
  
  MAIL FROM: <ph10@cus.cam.ac.uk>
  RCPT TO: <julius@ancient-rome.net>

- The envelope is separate from the RFC 2822 message

- Envelope (RFC 2821) fields need not be the same as the header (RFC 2822) fields

- MTAs are (mainly) concerned with envelopes
  Just like the Post Office...

- Error (“bounce”) messages have null senders
  MAIL FROM: <>

---

An SMTP session (1)

telnet relay.ancient-rome.net 25
220 relay.ancient-rome.net ESMTP Exim ...
EHLO taurus.cus.cam.ac.uk
250-relay.ancient-rome.net ...
250-SIZE 10485760
250-PIPELINING
250 HELP
MAIL FROM: <ph10@cus.cam.ac.uk>
250 OK
RCPT TO: <julius@ancient-rome.net>
250 Accepted
DATA
354 Enter message, ending with "

Received: from ...

(continued on next slide)
An SMTP session (2)

From: ...
To: ...

250 OK id=10sPdr-00034H-4B
QUIT
221 relay.ancient-rome.net closing connect...

SMTP return codes
2xx OK
3xx send more data
4xx temporary failure
5xx permanent failure

Email forgery

• It is trivial to forge unencrypted, unsigned mail

• This is an inevitable consequence when the sender and recipient hosts are independent

• It is less trivial to forge email really well!

• Most SPAM contains forged senders and forged header lines

• Be alert for forgery when investigating

• and ...

▶ Never send automatic SPAM or virus warnings! ▶
The Domain Name Service

- The DNS is a worldwide, distributed database
- DNS servers are called name servers
- There are multiple servers for each DNS zone
- Secondary servers are preferably off-site
- Records in the DNS are keyed by type and domain name
- Root servers are at the base of the hierarchy
- Caching is used to improve performance
- Each record has a time-to-live field

Use of the DNS for email (1)

- Three DNS record types are used for routing mail

- Mail eXchange (MX) records map mail domains to host names, and provide a list of hosts, with preferences
  - hermes.cam.ac.uk. MX 5 green.csi.cam.ac.uk.
  - MX 7 ppsw3.csi.cam.ac.uk.
  - MX 7 ppsw4.csi.cam.ac.uk.

- Address (A) records map host names to IPv4 addresses
  - green.csi.cam.ac.uk. A 131.111.8.57
  - ppsw3.csi.cam.ac.uk. A 131.111.8.38
  - ppsw4.csi.cam.ac.uk. A 131.111.8.44

- IPv6 addresses use AAAA (“quad A”) records
  - ahost.csi.cam.ac.uk. AAAA 2001:630:200:...
Use of the DNS for email (2)

- MX records were added to the DNS after its initial deployment

- Backwards compatibility rule
  If no MX records found, look for an address record, and if
  found, treat as an MX with 0 preference

- MX records were invented for gateways to other mail systems,
  but are now heavily used for handling generic (e.g. corporate)
  mail domains

Other DNS records

- The PTR record type maps IP addresses to names
- The IP address is inverted, then looked up in in-addr.arpa

  57.8.111.131.in-addr.arpa.
  PTR green.csi.cam.ac.uk.

- PTR and address records do not have to be one-to-one

  ppsw4.csi.cam.ac.uk. A 131.111.8.33
  33.8.111.131.in-addr.arpa.
  PTR lilac.csi.cam.ac.uk.

- CNAME records provide a general aliasing facility

  pelican.csi.cam.ac.uk.
  CNAME redshank.csx.cam.ac.uk.
DNS lookup tools

- *host* is easy to use for simple queries
  
  ```
 host demon.net
 host 192.168.34.135
 host -t mx demon.net
  ```

- *nslookup* is more widely available, but is more verbose in both input and output
  
  ```
 nslookup bt.net
 nslookup 192.168.34.135
 nslookup -querytype=mx bt.net
  ```

- *dig* is the ultimate nitty-gritty tool
  
  ```
 dig bt.net
 dig -x 192.168.34.135
 dig energis.net mx
  ```

DNS mysteries

- Sometime primary and secondary name servers get out of step

- When mystified, check for server disagreement
  A second argument for *host* specifies a name server
  
  ```
 host -t ns xxx.ac.uk
 xxx.ac.uk NS mentor.xxx.ac.uk
 xxx.ac.uk NS ns0.ja.net
  ```
  
  ```
 host hermes.xxx.ac.uk mentor.xxx.ac.uk
 hermes.xxx.ac.uk A 192.168.1.3
  ```

  ```
 host hermes.xxx.ac.uk ns0.ja.net
 hermes.xxx.ac.uk has no A record at
 ns0.ja.net (Authoritative answer)
  ```
Common DNS errors

- Final dots missing on RHS host names in MX records
- MX records point to aliases instead of canonical names
  This should work, but is inefficient and deprecated
- MX records point to non-existent hosts
- MX records contain IP addresses instead of host names on the right-hand side
  Unfortunately some MTAs accept this
  Also, some name server software conspires to support this
- MX records do not contain a preference value
- Some broken name servers give a server error when asked for a non-existent MX record

Routing a message

- Process locally handled addresses
  - Alias lists
  - Forwarding files
  - Local mailboxes
- Recognize special remote addresses
  - For example, those for local client hosts
- Look up MX records for remote addresses
- If self in the list, ignore all MX records with preferences greater than or equal to own preference
  - This logic is for secondary MX servers
- For each remaining MX record, get the host’s IP address(es)
Delivering a message

- Perform local delivery
- For each remote delivery
  Try to connect to each remote host until one succeeds
  If it accepts or permanently rejects the message, that’s it
- After temporary failures, try again at a later time
- Time out after deferring too many times
- Addresses are often sorted to avoid sending multiple copies of the same message
  The RFCs recommend single copies with multiple recipients
  Sometimes single copies are necessary

Checking incoming senders

- A lot of messages are sent with bad envelope senders
  Misconfigured mail software
  Unregistered domains
  Misconfigured name servers
  Forgeries – probably now the biggest cause nowadays
- Many MTAs check the domain of the sender address
- It is harder to check the local part
  A reverse SMTP “callout” is needed
  Uses more resources and can be quite slow
- Bounce messages have no envelope sender; no check is possible
Checking incoming recipients

• Some MTAs check each local recipient during the SMTP transaction
  Errors are handled by the sending MTA
  The receiving MTA avoids problems with bad senders

• Other MTAs accept messages without checking, and look at the recipients later
  Errors are handled by the receiving MTA
  More detailed error messages can be generated ...
  ... but not necessarily delivered

• The current proliferation of forged senders has made the first approach much more popular

Relay control

• Incoming: From any host to specific domains
  Example: incoming gateway or backup MTA

• Outgoing: From specific hosts to anywhere
  Example: outgoing gateway on local network

• From SMTP-authenticated hosts to anywhere
  Example: travelling employee or ISP customer connected to a remote network

• Encryption can be used for password protection during authentication

• Authentication can also be done using certificates
Policy controls on incoming mail

- Block known miscreant hosts and networks
  Realtime Blackhole List (RBL), Dial-up list (DUL), and many more

- Block known miscreant senders
  Not as effective as it once was for SPAM

- Refuse malformed messages

- Refuse virus-laden messages

- Recognize junk mail
  Discard
  Annotate