Welcome!

ccTLD DNS Workshop

8-11 October 2004, Bangkok, Thailand

Champika Wijayatunga, APNIC
<champika@apnic.net>

Acknowledgements

• Bill Manning
• Ed Lewis
• Joe Abley
• Olaf M. Kolkman

Introduction to DNS
Purpose of naming

• Addresses are used to locate objects

• Names are easier to remember than numbers

• You would like to get to the address or other objects using a name

• DNS provides a mapping from names to resources of several types

Names and addresses in general

• An address is how you get to an endpoint
 – Typically, hierarchical (for scaling):
 • 950 Milton Street, Brisbane City, QLD 4064
 • 204.152.187.11, +617-3858-3188

• A “name” is how an endpoint is referenced
 – Typically, no structurally significant hierarchy
 • “David”, “Tokyo”, “apnic.net”

Naming History

• 1970’s ARPANET
 – Host.txt maintained by the SRI-NIC
 – pulled from a single machine
 – Problems
 • traffic and load
 • Name collisions
 • Consistency

• DNS created in 1983 by Paul Mockapetris (RFCs 1034 and 1035), modified, updated, and enhanced by a myriad of subsequent RFCs
DNS

- A lookup mechanism for translating objects into other objects
- A globally distributed, loosely coherent, scalable, reliable, dynamic database
- Comprised of three components
 - A "name space"
 - Servers making that name space available
 - Resolvers (clients) which query the servers about the name space

DNS Features: Global Distribution

- Data is maintained locally, but retrievable globally
 - No single computer has all DNS data
- DNS lookups can be performed by any device
- Remote DNS data is locally cachable to improve performance

DNS Features: Loose Coherency

- The database is always internally consistent
 - Each version of a subset of the database (a zone) has a serial number
 - The serial number is incremented on each database change
- Changes to the master copy of the database are replicated according to timing set by the zone administrator
- Cached data expires according to timeout set by zone administrator
DNS Features: Scalability

- No limit to the size of the database
 - One server has over 70,000,000 names
 - Not a particularly good idea

- No limit to the number of queries
 - 40,000 queries per second handled easily

- Queries distributed among masters, slaves, and caches

DNS Features: Reliability

- Data is replicated
 - Data from master is copied to multiple slaves

- Clients can query
 - Master server
 - Any of the copies at slave servers

- Clients will typically query local caches

DNS Features: Dynamicity

- Database can be updated dynamically
 - Add/delete/modify of any record

- Modification of the master database triggers replication
 - Only master can be dynamically updated
 - Creates a single point of failure
Concept: DNS Names

- The namespace needs to be made hierarchical to be able to scale.
- The idea is to name objects based on
 - location (within country, set of organizations, set of companies, etc)
 - unit within that location (company within set of company, etc)
 - object within unit (name of person in company)

Concept: DNS Names contd.

- How names appear in the DNS
 - Fully Qualified Domain Name (FQDN)
 - WWW.APNIC.NET.
 - labels separated by dots
- DNS provides a mapping from FQDNs to resources of several types
- Names are used as a key when fetching data in the DNS

Concept: DNS Names contd.

- Domain names can be mapped to a tree
- New branches at the ‘dots’
Concept: Resource Records
- The DNS maps names into data using Resource Records.

![Resource Record Diagram]
- www.apnic.net.
- A 10.10.10.2
- Address Resource
- More detail later

Concept: Domains
- Domains are "namespaces"

- Everything below .com is in the com domain

- Everything below apnic.net is in the apnic.net domain and in the net domain
Delegation

- Administrators can create subdomains to group hosts
 - According to geography, organizational affiliation or any other criterion

- An administrator of a domain can delegate responsibility for managing a subdomain to someone else
 - But this isn’t required

- The parent domain retains links to the delegated subdomain
 - The parent domain “remembers” who it delegated the subdomain to

Concept: Zones and Delegations

- Zones are “administrative spaces”

- Zone administrators are responsible for portion of a domain’s name space

- Authority is delegated from a parent and to a child
Concept: Name Servers

• Name servers answer 'DNS' questions

• Several types of name servers
 – Authoritative servers
 • master (primary)
 • slave (secondary)
 – (Caching) recursive servers
 • also caching forwards
 • Mixture of functionality

Concept: Name Servers contd.

• Authoritative name server
 – Give authoritative answers for one or more zones
 – The master server normally loads the data from a zone file
 – A slave server normally replicates the data from the master via a zone transfer
Concept: Name Servers contd.

- Recursive server
 - Do the actual lookups; ask questions to the DNS on behalf of the clients
 - Answers are obtained from authoritative servers but the answers forwarded to the clients are marked as not authoritative
 - Answers are stored for future reference in the cache

Concept: Resolvers

- Resolvers ask the questions to the DNS system on behalf of the application
- Normally implemented in a system library (e.g., libc)
 - `gethostbyname(char *name);`
 - `gethostbyaddr(char *addr, int len, type);`

Concept: Resolving process & Cache

Question: www.apnic.net A

- Root-server
- Gtld-server
- Apnic-server

Resolved 192.168.5.10

Caching forwarder (recursive)
Add to cache
Concept: Resource Records

- Resource records consist of its name, its TTL, its class, its type and its RDATA
- TTL is a timing parameter
- IN class is widest used
- There are multiple types of RR records
- Everything behind the type identifier is called rdata

```plaintext
www.apnic.net. 3600 IN A 10.10.10.2
```

Example: RRs in a zone file

```plaintext
apnic.net. 7200 IN SOA ns.apnic.net. admin.apnic.net. 2001061501 ; Serial
43200 ; Refresh 12 hours
14400 ; Retry 4 hours
345600 ; Expire 4 days
7200 ; Negative cache 2 hours )
apnic.net. 7200 IN NS ns.apnic.net.
apnic.net. 7200 IN NS ns.ripe.net.
whois.apnic.net. 3600 IN A 193.0.1.162
```

Resource Record: SOA and NS

- The SOA and NS records are used to provide information about the zone itself
- The NS indicates where information about a given zone can be found
- The SOA record provides information about the start of authority, i.e. the top of the zone, also called the APEX
Resource Record: SOA

- Master server
- Contact address
- Version number
- Timing parameter

Concept: TTL and other Timers

- TTL is a timer used in caches
 - An indication for how long the data may be reused
 - Data that is expected to be ‘stable’ can have high TTLs
- SOA timers are used for maintaining consistency between primary and secondary servers

Places where DNS data lives

- Changes do not propagate instantly
To remember...

- Multiple authoritative servers to distribute load and risk:
 - Put your name servers apart from each other
- Caches to reduce load to authoritative servers and reduce response times
- SOA timers and TTL need to be tuned to needs of zone. Stable data: higher numbers

What have we learned so far

- We learned about the architectures of
 - resolvers,
 - caching forwarders,
 - authoritative servers,
 - timing parameters
- We continue writing a zone file

Writing a zone file

- Zone file is written by the zone administrator
- Zone file is read by the master server and it’s content is replicated to slave servers
- What is in the zone file will end up in the database
- Because of timing issues it might take some time before the data is actually visible at the client side
First attempt

- The 'header' of the zone file
 - Start with a SOA record
 - Include authoritative name servers and, if needed, glue
 - Add other information

- Add other RRs

- Delegate to other zones

The SOA record

```
apnic.net. 3600 IN SOA ns.apnic.net. (admin.email.apnic.net.
    2002021301 ; serial
    1h ; refresh
    30M ; retry
    1W ; expiry
    3600 ) ; neg. ans. ttl
```

- admin.email@apnic.net
- admin.email.apnic.net
- Serial number: 32bit circular arithmetic
 - People often use date format
 - To be increased after editing
- The timers above qualify as reasonable

Authoritative NS records and related A records

```
apnic.net. 3600 IN NS NS1.apnic.net.
apnic.net. 3600 IN NS NS2.apnic.net.
NS1.apnic.net. 3600 IN A  203.0.0.4
NS2.apnic.net. 3600 IN A  193.0.0.202
```

- NS record for all the authoritative servers
 - They need to carry the zone at the moment you publish
- A records only for "in-zone" name servers
 - Delegating NS records might have glue associated
Other ‘APEX’ data

Examples:

- MX records for mail
 (see next slide)
- Location records
- TXT records
- A records
- KEY records for dnssec

MX record

- SMTP (simple mail transfer protocol) uses MX records to find the destination mail server
- If a mail is sent to admin@apnic.net the sending mail agent looks up ‘apnic.net MX’
- MX record contains mail relays with priority
 - The lower the number the higher the priority
- Don’t add MX records without having a mail relay configured

Other data in the zone

- Add all the other data to your zone file
- Some notes on notation
 - Note the fully qualified domain name including trailing dot
 - Note TTL and CLASS
Zone file format short cuts

- **nice formatting**

```
apnic.net. 3600 IN SOA NS1.apnic.net. admin\email.apnic.net. {
  2002021301 ; serial
  1h ; refresh
  1D ; retry
  1W ; expiry
  3600 ; neg. ansrw. Ttl
}
apnic.net. 3600 IN NS NS1.apnic.net.
apnic.net. 3600 IN NS NS2.apnic.net.
apnic.net. 3600 IN MX 50 mail.apnic.net.
apnic.net. 3600 IN MX 150 mailhost2.apnic.net.
apnic.net. 3600 IN TXT "Demonstration and test zone" NS1.apnic.net.
apnic.net. 3600 IN A 203.0.0.4
NS1.apnic.net. 4500 IN A 193.0.0.202
localhost.apnic.net. 3600 IN A 127.0.0.1
NS1.apnic.net. 3600 IN A 193.0.0.4
www.apnic.net. 3600 IN CNAME IN.apnic.net.
```

Zone file short cuts: repeating last name

```
apnic.net. 3600 IN SOA NS1.apnic.net. admin\email.apnic.net. {
  2002021301 ; serial
  1h ; refresh
  1D ; retry
  1W ; expiry
  3600 ; neg. ansrw. Ttl
}
apnic.net. 3600 IN NS NS1.apnic.net.
apnic.net. 3600 IN NS NS2.apnic.net.
apnic.net. 3600 IN MX 50 mail.apnic.net.
apnic.net. 3600 IN MX 150 mailhost2.apnic.net.
apnic.net. 3600 IN TXT "Demonstration and test zone" NS1.apnic.net.
apnic.net. 3600 IN A 203.0.0.4
NS1.apnic.net. 3600 IN A 193.0.0.202
localhost.apnic.net. 4500 IN A 127.0.0.1
NS1.apnic.net. 3600 IN A 193.0.0.4
www.apnic.net. 3600 IN CNAME IN.apnic.net.
```

Zone file short cuts: default TTL

```
$TTL 3600 ; Default TTL directive
apnic.net. 3600 IN SOA NS1.apnic.net. admin\email.apnic.net. {
  2002021301 ; serial
  1h ; refresh
  1D ; retry
  1W ; expiry
  3600 ; neg. ansrw. Ttl
}
apnic.net. 3600 IN NS NS1.apnic.net.
apnic.net. 3600 IN NS NS2.apnic.net.
apnic.net. 3600 IN MX 50 mail.apnic.net.
apnic.net. 3600 IN MX 150 mailhost2.apnic.net.
apnic.net. 3600 IN TXT "Demonstration and test zone" NS1.apnic.net.
apnic.net. 3600 IN A 203.0.0.4
NS1.apnic.net. 3600 IN A 193.0.0.202
localhost.apnic.net. 4500 IN A 127.0.0.1
NS1.apnic.net. 3600 IN A 193.0.0.4
www.apnic.net. 3600 IN CNAME IN.apnic.net.
```

Zone file short cuts: ORIGIN

$TTL 3600 ; Default TTL directive
$ORIGIN apnic.net.
@ IN SOA NS1 admin.email.apnic.net. (2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. Ttl
IN NS NS1
IN NS NS2
IN MX 50 mailhost
IN MX 150 mailhost2
IN TXT "Demonstration and test zone"
NS1 IN A 203.0.0.4
NS2 IN A 193.0.0.202
localhost 4500 IN A 127.0.0.1
NS1 IN A 203.0.0.4
www IN CNAME NS1

Zone file short cuts: Eliminate IN

$TTL 3600 ; Default TTL directive
$ORIGIN apnic.net.
@ SOA NS1 admin.email.sanog.org. (2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. Ttl
NS NS1
NS NS2
apnic.net. MX 50 mailhost
apnic.net. MX 150 mailhost2
IN TXT "Demonstration and test zone"
NS1 A 203.0.0.4
NS2 A 193.0.0.202
localhost 4500 A 127.0.0.1
NS1 A 203.0.0.4
www IN CNAME NS1

Delegating a zone (becoming a parent)

• Delegate authority for a sub domain to another party (splitting of training.apnic.net from apnic.net)
Concept: Glue

- Delegation is done by adding NS records:

 training.apnic.net. NS ns1.training.apnic.net.
 training.apnic.net. NS ns2.training.apnic.net.
 training.apnic.net. NS ns1.apnic.net.
 training.apnic.net. NS ns2.apnic.net.

- How to get to ns1 and ns2... We need the addresses

- Add glue records so that resolvers can reach ns1 and ns2

 ns1.training.apnic.net. A 10.0.0.1
 ns2.training.apnic.net. A 10.0.0.2

Concept: Glue contd.

- Glue is 'non-authoritative' data
- Don’t include glue for servers that are not in sub zones

 training.apnic.net. NS
 Training.apnic.net. NS
 training.apnic.net. NS ns2.apnic.net.
 training.apnic.net. NS ns1.apnic.net.
 ns1.training.apnic.net. A 10.0.0.1
 ns2.training.apnic.net. A 10.0.0.2

 Only this record needs glue

Delegating training.apnic.net. from apnic.net.

- Setup minimum two servers
- Create zone file with NS records
- Add all training.apnic.net data
- Add NS records and glue
- Make sure there is no other data from the training.apnic.net. zone in the zone file
Recursive Server

Overview

- Recursive Service
- Root server list
- localhost
- 0.0.127.in-addr.arpa
- named.conf
Recursive Server

- Used to lookup data by applications
- Needs to know how to reach top of DNS
- Also should stop some queries
 - localhost, 127.0.0.1

- Files
 - named.conf
 - root.hints
 - localhost zone
 - 0.0.127.in-addr.arpa zone
- We'll do named.conf last

Root server list

- List of the 13 root server records
- Where to get it
 - ftp rs.internic.net
 - anonymous login
 - cd domain
 - get one of these files (they are [nearly] the same)
 - db.cache
 - named.root
 - named.cache

What it looks like

This file holds the information on root name servers needed to initialize cache of Internet domain name servers (e.g. reference this file in the "cache <file>", configuration file of BIND domain name servers).

This file is made available by InterNIC under anonymous FTP as file /domain/named.cache on server FTP.INTERNIC.NET

last update: Nov 5, 2002
related version of root zone: 2002110501

formerly NS.INTERNIC.NET

3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

3600000 IN NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33

; End of File
What you do to this file (hints file)

- Nothing
- You will refer to it in named.conf using a zone statement
- In real networks, don't change it
 - But for learning, we will change it

localhost

- Loopback name in operating systems
- Means 127.0.0.1
- Queries for this shouldn't use recursion
- So we will configure a file to define the localhost. zone
 - Note the "."

localhost file

```
$TTL 86400
@ IN SOA localhost. root.localhost. ( 1 ; serial
1800 ; refresh
900 ; retry
69120 ; expire
1080 ; negative cache ttl )
NS localhost.
A 127.0.0.1
```
Reverse for localhost

- Since we want "localhost -> 127.0.0.1" we want to have "127.0.0.1 -> localhost"
- We need a zone called 0.0.127.in-addr.arpa.

0.0.127.in-addr.arpa file

```
$TTL 86400
@ IN SOA localhost. root.localhost. ( 1 ; serial 1800 ;refresh 900 ;retry 69120 ;expire 1080 ;negative cache ttl )
    NS localhost.
    1 PTR localhost.
```

Assembling the files

- Here’s my directory:
  ```bash
  [/var/named/recursive] % ls
  0.0.127.in-addr.arpa localhost	named.root
  
  The directory name and file names will be in named.conf
  
  Now I create a named.conf file in the same directory
  ```
named.conf

options {
 directory "/var/named/recursive";
 recursion yes; // by default recursion is on
};
zone "." {
 type hint;
 file "named.root";
};
zone "localhost." {
 type master;
 file "localhost";
};
zone "0.0.127.in-addr.arpa." {
 type master;
 file "0.0.127.in-addr.arpa";
};

Running the server

• From the directory
 % named -g -c named.conf

Testing the server

• Just to show it is alive
 % dig @127.0.0.1 www.arin.net
 ;;; global options: printcmd
 ;;; Got answer:
 ;;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16580
 ;;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 10, ADDITIONAL: 0
 ;;; QUESTION SECTION:
 ;www.arin.net. IN A
 ;;; ANSWER SECTION:
 www.arin.net. 10800 IN A 192.149.252.17
 www.arin.net. 10800 IN A 192.149.252.16
 ;;; AUTHORITY SECTION:
 arin.net. 10800 IN NS arrowroot.arin.net.
 (and so on)
 ;;; Query time: 3066 msec
 ;;; SERVER: 127.0.0.1#53(127.0.0.1)
 ;;; WHEN: Wed Feb 19 11:07:05 2003
 ;;; MSG SIZE rcvd: 251
Congratulations - Your First Server!

• It's just the beginning...

Questions?