Introduction to Internet Mail

Philip Hazel
University of Cambridge

Mail agents

- MUA = Mail User Agent
- Interacts directly with the end user
 Pine, MH, Elm, mutt, mail, Eudora, Marcel, Mailstrom, Mulberry, Pegasus, Simeon, Netscape, Outlook, ...
- Multiple MUAs on one system - end user choice
- MTA = Mail Transfer Agent
- Receives and delivers messages
 Sendmail, Smail, PP, MMDF, Charon, Exim, qmail, Postfix, ...
- One MTA per system - sysadmin choice

Message format (1)

From: Philip Hazel <ph10@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
Cc: Mark Anthony <MarkA@cleo.co.uk>
Subject: How Internet mail works

Julius,
I'm going to be running a course on ...

- Format was originally defined by RFC 822 in 1982
- Now superseded by RFC 2822
- Message consists of
 Header lines
 Body lines

Message format (2)

- An address consists of a local part and a domain
 julius@ancient-rome.net
- A basic message body is unstructured
- Other RFCs (MIME, 2045) add additional headers which define structure for the body
- MIME supports attachments of various kinds and in various encodings
- Creating/decoding attachments is the MUA's job

Authenticating senders

- Embedded MUA uses inter-process call to send to MTA
 May use pipe, file, or internal SMTP over a pipe
 MTA knows the identity of the sender
 Normally inserts Sender: header if differs from From:

- Freestanding MUA uses SMTP to send mail
 MTA cannot easily distinguish local/remote clients
 No authentication in basic protocol
 AUTH command in extended SMTP
 Use of security additions (TLS/SSL)
 MUA can point at any MTA whatsoever
 Need for relay control
 Host and network blocks
A message in transit (1)

- Headers added by the MUA before sending

From: Philip Hazel <phil@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
cc: Mark Anthony <MarkA@cleo.co.uk>
Subject: How Internet mail works

Date: Fri, 10 May 2002 11:29:24 +0100 (BST)
Message-ID: <Pine.SOL.3.96.990111343.19032A-100000@taurus.cus.cam.ac.uk>
MIME-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII

Julius,
I'm going to be running a course on ...

A message in transit (2)

- Headers added by MTAs

Received: from taurus.cus.cam.ac.uk
((192.168.34.54) id 101qx-00011X-00; Fri, 10 May 2002 11:50:39 +0100
Received: from ph10 (helio=localhost) by taurus.cus.cam.ac.uk with local-smtp
((Exim 4.10) id 101gin-000598-00; Fri, 10 May 2002 11:50:25 +0100
From: Philip Hazel <phil@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
cc: Mark Anthony <MarkA@cleo.co.uk>

A message in transit (3)

- A message is transmitted with an envelope:

MAIL FROM:<phil@cus.cam.ac.uk>
RCPT TO:<julius@ancient-rome.net>

The envelope is separate from the RFC 2822 message

Envelope (RFC 2821) fields need not be the same as the
header (RFC 2822) fields

MTAs are (mainly) concerned with envelopes
Just like the Post Office...

Error (“bounce”) messages have null senders
MAIL FROM::<>

An SMTP session (1)

- SMTP session:

From: ...
To: ...
etc....
250 OK id=10aPdr-0034H-00
QUIT
221 relay.ancient-rome.net closing conn...

SMTP return codes
2xx OK
3xx send more data
4xx temporary failure
5xx permanent failure

An SMTP session (2)

Email forgery

- It is trivial to forge unencrypted, unsigned mail
- This is an inevitable consequence when the sender and
 recipient hosts are independent
- It is less trivial to forge really well!
- Most SPAM usually contains some forged header lines
- Be alert for forgery when investigating
The Domain Name Service

- The DNS is a worldwide, distributed database
- DNS servers are called name servers
- There are multiple servers for each DNS zone
- Secondary servers are preferably off-site
- Records are keyed by type and domain name
- Root servers are at the base of the hierarchy
- Caching is used to improve performance
- Each record has a time-to-live field

Use of the DNS for email (1)

- Two DNS record types are used for routing mail
 - Mail Exchange (MX) records map mail domains to host names, and provide a list of hosts with preferences:
 - MX 5 green.csi.cam.ac.uk.
 - MX 7 ppsw3.csi.cam.ac.uk.
 - MX 7 ppsw4.csi.cam.ac.uk.
 - Address (A) records map host names to IP addresses:
 - green.csi.cam.ac.uk. A 131.111.8.57
 - ppsw3.csi.cam.ac.uk. A 131.111.8.38
 - ppsw4.csi.cam.ac.uk. A 131.111.8.44

Use of the DNS for email (2)

- MX records were added to the DNS after its initial deployment
- Backwards compatibility rule: If no MX records found, look for an A record, and if found, treat as an MX with 0 preference
- MX records were invented for gateways to other mail systems, but are now heavily used for handling generic mail domains

Other DNS records

- The PTR record type maps IP addresses to names
 - 57.8.111.131.in-addr.arpa.
 - PTR green.csi.cam.ac.uk.
 - PTR 1111.8.33 33.8.111.131.in-addr.arpa.
- PTR and A records do not have to be one-to-one
 - ppsw4.csi.cam.ac.uk. A 131.111.8.33
 - ppsw4.csi.cam.ac.uk. A 131.111.8.44
- CNAME records provide an aliasing facility
 - pelican.cmi.cam.ac.uk
 - CNAME redshank.csx.cam.ac.uk.

DNS lookup tools

- host is easy to use for simple queries
 - host demon.net
 - host 192.168.34.135
 - host -t mx demon.net
- nslookup is more widely available, but is more verbose
 - nslookup bt.net
 - nslookup 192.168.34.135
 - nslookup -querytype=mx bt.net
- dig is the ultimate nitty-gritty tool
 - dig bt.net
 - dig -x 192.158.34.135
 - dig bt.net mx

DNS mysteries

- Sometimes primary and secondary name servers get out of step
 - When mystified, check for server disagreement
 - host -t ns ioe.ac.uk
 - ioe.ac.uk NS mentor.ioe.ac.uk
 - ioe.ac.uk NS ns0.ja.net
 - host mentor.ioe.ac.uk mentor.ioe.ac.uk
 - mentor.ioe.ac.uk A 144.82.31.3
 - host mentor.ioe.ac.uk ns0.ja.net
 - mentor.ioe.ac.uk has no A record at ns0.ja.net (Authoritative answer)
Common DNS errors
- Final dots missing on RHS host names in MX records
- MX records point to aliases instead of canonical names
 - This should work, but is inefficient and deprecated
- MX records point to non-existent hosts
- MX records contain an IP address instead of a host name on the right-hand side
 - Unfortunately some MTAs accept this
- MX records do not contain a preference value
- Some broken name servers give a server error when asked for a non-existent MX record

Routing a message
- Process local addresses
 - Alias lists
 - Forwarding files
- Recognize special remote addresses
 - e.g. local client hosts
- Look up MX records for remote addresses
- If self in list, ignore all MX records with preferences greater than or equal to own preference
- For each MX record, get IP address(es)

Delivering a message
- Perform local delivery
- For each remote delivery
 - Try to connect to each remote host until one succeeds
 - If it accepts or permanently reject the message, that's it
- After temporary failures, try again at a later time
- Time out after deferring too many times
- Addresses are often sorted to avoid sending multiple copies

Checking incoming senders
- A lot of messages are sent with bad envelope senders
 - Mis-configured mail software
 - Unregistered domains
 - Mis-configured name servers
 - Forgers
- Forger seems to be the largest category nowadays
- Many MTAs check the sender's domain
- It is harder to check the local part
 - Uses more resources, and can be quite slow
- Bounce messages have no envelope sender

Checking incoming recipients
- Some MTAs check each local recipient during the SMTP transaction
 - Errors are handled by the sending MTA
 - The receiving MTA avoids problems with bad senders
- Other MTAs accept messages without checking, and look at the recipients later
 - Errors are handled by the receiving MTA
 - More detailed error messages can be generated
- The current proliferation of forged senders has made the first approach much more popular

Relay control
- Incoming: From any host to specified domains
 - e.g. incoming gateway or backup MTA
- Outgoing: From specified hosts to anywhere
 - e.g. outgoing gateway on local network
- From authenticated hosts to anywhere
 - e.g. travelling employee or ISP customer connected to remote network
- Encryption can be used for password protection during authentication
- Authentication can also be done using certificates
Policy controls on incoming mail

- Block known miscreant hosts and networks
 Realtime Blackhole List (RBL), Dial-up list (DUL), etc.
 http://mail-abuse.org (now a charged service) and others

- Block known miscreant senders
 Not as effective as it once was for SPAM

- Refuse malformed messages

- Recognize junk mail
 Discard
 Annotate