Network Management & Monitoring Overview

Network Design and Operations

July 24, 2009
Eugene, Oregon, USA

hervey@nsrc.org
Introduction

• This is a *big* topic...

• There are a lot of tools to choose from:
 - Open Source
 - Commercial
 - Linux/Unix-based
 - Windows-based
 - Network Vendor tools (Cisco, Juniper, others)

• No one combination of tools is correct for everyone.

• What you need to know about your network will drive your choice of tools.
What is network management?

- System & Service monitoring
 - Reachability, availability
- Resource measurement/monitoring
 - Capacity planning, availability
- Performance monitoring (RTT, throughput)
- Statistics & Accounting/Metering
- Fault Management (Intrusion Detection)
 - Fault detection, troubleshooting, and tracking
 - Ticketing systems, help desk
- Change management & configuration monitoring
The Big picture

- Monitoring
- Data collection
- Accounting
- Capacity planning
- Availability (SLAs)
- Trends
- Detect problems

- Change control & monitoring
- Improvements
- Upgrades

- NOC Tools
- Ticket system

- User complaints
- Requests

- Fix problems

Notifications

Ticket

Ticket

Ticket

Ticket

Ticket
Why network management?

- Make sure the network is up and running. Need to monitor it.
 - Deliver projected SLAs (Service Level Agreements)
 - Depends on policy
 - What does your management expect?
 - What do your users expect?
 - What do your customers expect?
 - What does the rest of the Internet expect?
 - Is 24x7 good enough?
 - There's no such thing as 100% uptime
Why network management? - 2

- Since you have switches that support SNMP…
- Use public domain tools to ping every switch and router in your network and report that back to you
 - Nagios – http://nagios.org/
 - Sysmon - http://www.sysmon.org/
 - Open NMS - http://www.opennms.org/
- Goal is to know your network is having problems before the users start calling.
Why network management? - 3

- What does it take to deliver 99.9% uptime?
 - $30.5 \times 24 = 762$ hours a month
 - $(762 - (762 \times 0.999)) \times 60 = 45$ minutes maximum of downtime a month!

- Need to shutdown 1 hour / week?
 - $(762 - 4) / 762 \times 100 = 99.4\%$
 - Remember to take planned maintenance into account in your calculations, and inform your users/customers if they are included/excluded in the SLA

- How is availability measured?
 - In the core? End-to-end? From the Internet?
Why network management? - 4

- Know when to upgrade
 - Is your bandwidth usage too high?
 - Where is your traffic going?
 - Do you need to get a faster line, or more providers?
 - Is the equipment too old?

- Keep an audit trace of changes
 - Record all changes
 - Makes it easier to find cause of problems due to upgrades and configuration changes

- Where to consolidate all these functions?
 - In the Network Operation Center (NOC)
The Network Operations Center (NOC)

- Where it all happens
 - Coordination of tasks
 - Status of network and services
 - Fielding of network-related incidents and complaints
 - Where the tools reside ("NOC server")
 - Documentation including:
 - Network diagrams
 - Database/flat file of each port on each switch
 - Network description
 - Much more as you'll see a bit later.
Some of you asked, “How do you keep track of it all?”...

...In the end, “we” wrote our own software...

Netdot!
Some basics, such as documenting your switches...

- What is each port connected to?
- Can be simple text file with one line for every port in a switch:

 health-switch1, port 1, Room 29 – Director’s office
 health-switch1, port 2, Room 43 – Receptionist
 health-switch1, port 3, Room 100 – Classroom
 health-switch1, port 4, Room 105 – Professors Office

 health-switch1, port 25, uplink to health-backbone

- This information might be available to your network staff, help desk staff, via a wiki, software interface, etc.
- Remember to label your ports!
Documentation: Labeling

Nice :-)
Documentation:
Software and Discovery

There are some other Open Source network documentation projects, including:

- **Maintain** to manage DHCP and DNS entries.
 - See http://maintainproject.osuosl.org/about for a humorous history.

- **Netdisco**:
 - Locate a machine on the network by MAC or IP and show the switch port it lives at.
 - Turn Off a switch port while leaving an audit trail. Admins log why a port was shut down.
 - Inventory your network hardware by model, vendor, switch-card, firmware and operating system.
 - Report on IP address and switch port usage: historical and current.
 - Pretty pictures of your network.

- **IPplan** is a web based, multilingual, TCP IP address management (IPAM) software and tracking tool.
Documentation: Diagrams
Windows Diagramming Software

- Visio:
- Ezdraw:
 http://www.edrawsoft.com/

Open Source Diagramming Software

- Dia:
 http://live.gnome.org/Dia
- Cisco reference icons
 http://www.cisco.com/web/about/ac50/ac47/2.html
- Nagios Exchange:
 http://www.nagiosexchange.org/
Network monitoring systems and tools

• Three kinds of tools

 - Diagnostic tools – used to test connectivity, ascertain that a location is reachable, or a device is up – usually active tools

 - Monitoring tools – tools running in the background ("daemons" or services), which collect events, but can also initiate their own probes (using diagnostic tools), and recording the output, in a scheduled fashion.

 - Performance tools – tell us how our network is handling traffic flow.
Performance Tools

- Key is to look at each router interface (probably don’t need to look at switch ports).
- Two common tools:
 – http://cricket.sourceforge.net/
 – http://www.mrtg.com/
Network monitoring systems and tools - 3

- **Active tools**
 - Ping – test connectivity to a host
 - Traceroute – show path to a host
 - MTR – combination of ping + traceroute
 - SNMP collectors (polling)

- **Passive tools**
 - log monitoring, SNMP trap receivers, NetFlow

- **Automated tools**
 - SmokePing – record and graph latency to a set of hosts, using ICMP (Ping) or other protocols
 - MRTG/RRD – record and graph bandwidth usage on a switch port or network link, at regular intervals
Network monitoring systems and tools - 4

• Network & Service Monitoring tools
 - Nagios – server and service monitor
 → Can monitor pretty much anything
 → HTTP, SMTP, DNS, Disk space, CPU usage, ...
 → Easy to write new plugins (extensions)
 - Basic scripting skills are required to develop simple monitoring jobs – Perl, Shellscript...
 - Many good Open Source tools
 → Zabbix, ZenOSS, Hyperic, ...

• Use them to monitor reachability and latency in your network
 - Parent-child dependency mechanisms are very useful!
• Monitor your critical Network Services
 - DNS
 - Radius/LDAP/SQL
 - SSH to routers
• How will you be notified?
• Don't forget log collection!
 - Every network device (and UNIX and Windows servers as well) can report system events using syslog
 - You **MUST** collect and monitor your logs!
 - Not doing so is one of the most common mistakes when doing network monitoring
Network Management Protocols

• SNMP – Simple Network Management Protocol
 – Industry standard, hundreds of tools exist to exploit it
 – Present on any decent network equipment
 ➔ Network throughput, errors, CPU load, temperature, ...
 – UNIX and Windows implement this as well
 ➔ Disk space, running processes, ...

• SSH and telnet
 – It's also possible to use scripting to automate monitoring of hosts and services
SNMP Tools

• Net SNMP tool set

• Very simple to build simple tools
 – One that builds snapshots of which IP is used by which Ethernet address
 – Another that builds snapshots of which Ethernet addresses exist on which port on which switch.
Statistics & accounting tools

- Traffic accounting and analysis
 - what is your network used for, and how much
 - Useful for Quality of Service, detecting abuses, and billing (metering)
 - Dedicated protocol: NetFlow
 - Identify traffic "flows": protocol, source, destination, bytes
 - Different tools exist to process the information
 - Flowtools, flowc
 - NFSen
 - ...

Fault & problem management

- Is the problem transient?
 - Overload, temporary resource shortage
- Is the problem permanent?
 - Equipment failure, link down
- How do you detect an error?
 - Monitoring!
 - Customer complaints
- A ticket system is essential
 - Open ticket to track an event (planned or failure)
 - Define dispatch/escalation rules
 - Who handles the problem?
 - Who gets it next if no one is available?
Ticketing systems

• Why are they important?
 − Track all events, failures and issues

• Focal point for helpdesk communication

• Use it to track all communications
 − Both internal and external

• Events originating from the outside:
 − customer complaints

• Events originating from the inside:
 − System outages (direct or indirect)
 − Planned maintenance / upgrade – Remember to notify your customers!
Ticketing systems - 2

- Use ticket system to follow each case, including internal communication between technicians
- Each case is assigned a case number
- Each case goes through a similar life cycle:
 - New
 - Open
 - ...
 - Resolved
 - Closed
Ticketing systems - 3

- **Workflow:**

```
<table>
<thead>
<tr>
<th>Ticket System</th>
<th>Helpdesk</th>
<th>Tech</th>
<th>Eqpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>query from</td>
<td>request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>customer</td>
<td>request</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>&lt;- ack.</td>
<td>comm</td>
<td>fix issue</td>
<td>eqpt</td>
</tr>
<tr>
<td>customer</td>
<td>report fix</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
```
Ticketing systems - 4

Some ticketing and management software systems:

rt
- Heavily used worldwide.
- A classic ticketing system that can be customized to your location.
- Somewhat difficult to install and configure.
- Handles large-scale operations.

trac
- A hybrid system that includes a wiki and project management features.
- Ticketing system is not as robust as rt, but works well.
- Often used for "trac"king group projects.

redmine
- Like trac, but more robust. Harder to install
Network Intrusion Detection Systems - NIDS

These are systems that observe all of your network traffic and report when it sees specific kinds of problems

- Finds hosts that are infected or are acting as spamming sources.
- SNORT is the most common open source tool
 http://www.snort.org/
Configuration management & monitoring

- Record changes to equipment configuration, using *revision control* (also for configuration files)
- Inventory management (equipment, IPs, interfaces, etc.)
- Use versioning control
 - As simple as: "cp named.conf named.conf.20070827-01"
- For plain configuration files:
 - CVS, Subversion
 - Mercurial
• Traditionally, used for source code (programs)
• Works well for any text-based configuration files
 – Also for binary files, but less easy to see differences
• For network equipment:
 – RANCID (Automatic Cisco configuration retrieval and archiving, also for other equipment types)
The Big picture - Again

- Monitoring
- Data collection
- Accounting

- NOC Tools
- Ticket system

- Capacity planning
- Availability (SLAs)
- Trends
- Detect problems

- User complaints
- Requests

- Fix problems

- Change control & monitoring

- Improvements
- Upgrades

Notifications
Summary of Open Source Solutions

<table>
<thead>
<tr>
<th>Performance</th>
<th>Net Management</th>
<th>Change Mgmt</th>
<th>Security/NIDS</th>
<th>Ticketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cricket</td>
<td>Big Brother</td>
<td>Mercurial</td>
<td>Nessus</td>
<td>RT, Trac, Redmine</td>
</tr>
<tr>
<td>IFPFM</td>
<td>Big Sister</td>
<td>Rancid (routers)</td>
<td>OSSEC</td>
<td></td>
</tr>
<tr>
<td>flowc</td>
<td>Cacti</td>
<td>RCS</td>
<td>Prelude</td>
<td></td>
</tr>
<tr>
<td>mrtg</td>
<td>Hyperic</td>
<td>Subversion</td>
<td>Samhain</td>
<td></td>
</tr>
<tr>
<td>netflow</td>
<td>Munin</td>
<td></td>
<td>SNORT</td>
<td></td>
</tr>
<tr>
<td>NfSen</td>
<td>Nagios*</td>
<td></td>
<td>Untangle</td>
<td></td>
</tr>
<tr>
<td>ntop</td>
<td>Netdisco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmacct</td>
<td>Netdot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrdtool</td>
<td>OpenNMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmokePing</td>
<td>Sysmon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNMP/Perl/ping</td>
<td>Zabbix</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions ?